Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
Step 1.1.2
Multiply by .
Step 1.2
Subtract from .
Step 2
Multiply by .
Step 3
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Subtract from .
Step 5
Subtract from both sides of the equation.
Step 6
Use the quadratic formula to find the solutions.
Step 7
Substitute the values , , and into the quadratic formula and solve for .
Step 8
Step 8.1
Simplify the numerator.
Step 8.1.1
Raise to the power of .
Step 8.1.2
Multiply .
Step 8.1.2.1
Multiply by .
Step 8.1.2.2
Multiply by .
Step 8.1.3
Add and .
Step 8.1.4
Rewrite as .
Step 8.1.4.1
Factor out of .
Step 8.1.4.2
Rewrite as .
Step 8.1.5
Pull terms out from under the radical.
Step 8.2
Multiply by .
Step 8.3
Simplify .
Step 9
Step 9.1
Simplify the numerator.
Step 9.1.1
Raise to the power of .
Step 9.1.2
Multiply .
Step 9.1.2.1
Multiply by .
Step 9.1.2.2
Multiply by .
Step 9.1.3
Add and .
Step 9.1.4
Rewrite as .
Step 9.1.4.1
Factor out of .
Step 9.1.4.2
Rewrite as .
Step 9.1.5
Pull terms out from under the radical.
Step 9.2
Multiply by .
Step 9.3
Simplify .
Step 9.4
Change the to .
Step 10
Step 10.1
Simplify the numerator.
Step 10.1.1
Raise to the power of .
Step 10.1.2
Multiply .
Step 10.1.2.1
Multiply by .
Step 10.1.2.2
Multiply by .
Step 10.1.3
Add and .
Step 10.1.4
Rewrite as .
Step 10.1.4.1
Factor out of .
Step 10.1.4.2
Rewrite as .
Step 10.1.5
Pull terms out from under the radical.
Step 10.2
Multiply by .
Step 10.3
Simplify .
Step 10.4
Change the to .
Step 11
The final answer is the combination of both solutions.
Step 12
The result can be shown in multiple forms.
Exact Form:
Decimal Form: