Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Use the vertex form, , to determine the values of , , and .
Step 1.2
Since the value of is positive, the parabola opens up.
Opens Up
Step 1.3
Find the vertex .
Step 1.4
Find , the distance from the vertex to the focus.
Step 1.4.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 1.4.2
Substitute the value of into the formula.
Step 1.4.3
Cancel the common factor of .
Step 1.4.3.1
Cancel the common factor.
Step 1.4.3.2
Rewrite the expression.
Step 1.5
Find the focus.
Step 1.5.1
The focus of a parabola can be found by adding to the y-coordinate if the parabola opens up or down.
Step 1.5.2
Substitute the known values of , , and into the formula and simplify.
Step 1.6
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 1.7
Find the directrix.
Step 1.7.1
The directrix of a parabola is the horizontal line found by subtracting from the y-coordinate of the vertex if the parabola opens up or down.
Step 1.7.2
Substitute the known values of and into the formula and simplify.
Step 1.8
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Direction: Opens Up
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 2
Step 2.1
Replace the variable with in the expression.
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
One to any power is one.
Step 2.2.1.2
Multiply by .
Step 2.2.2
Find the common denominator.
Step 2.2.2.1
Write as a fraction with denominator .
Step 2.2.2.2
Multiply by .
Step 2.2.2.3
Multiply by .
Step 2.2.2.4
Write as a fraction with denominator .
Step 2.2.2.5
Multiply by .
Step 2.2.2.6
Multiply by .
Step 2.2.3
Combine the numerators over the common denominator.
Step 2.2.4
Simplify the expression.
Step 2.2.4.1
Multiply by .
Step 2.2.4.2
Subtract from .
Step 2.2.4.3
Add and .
Step 2.2.5
The final answer is .
Step 2.3
The value at is .
Step 2.4
Replace the variable with in the expression.
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raising to any positive power yields .
Step 2.5.1.2
Multiply by .
Step 2.5.2
Simplify by adding numbers.
Step 2.5.2.1
Add and .
Step 2.5.2.2
Add and .
Step 2.5.3
The final answer is .
Step 2.6
The value at is .
Step 2.7
Replace the variable with in the expression.
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
Raise to the power of .
Step 2.8.1.2
Multiply by .
Step 2.8.2
Find the common denominator.
Step 2.8.2.1
Write as a fraction with denominator .
Step 2.8.2.2
Multiply by .
Step 2.8.2.3
Multiply by .
Step 2.8.2.4
Write as a fraction with denominator .
Step 2.8.2.5
Multiply by .
Step 2.8.2.6
Multiply by .
Step 2.8.3
Combine the numerators over the common denominator.
Step 2.8.4
Simplify each term.
Step 2.8.4.1
Multiply by .
Step 2.8.4.2
Multiply by .
Step 2.8.5
Simplify by adding and subtracting.
Step 2.8.5.1
Subtract from .
Step 2.8.5.2
Add and .
Step 2.8.6
The final answer is .
Step 2.9
The value at is .
Step 2.10
Replace the variable with in the expression.
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
Raise to the power of .
Step 2.11.1.2
Multiply by .
Step 2.11.2
Find the common denominator.
Step 2.11.2.1
Write as a fraction with denominator .
Step 2.11.2.2
Multiply by .
Step 2.11.2.3
Multiply by .
Step 2.11.2.4
Write as a fraction with denominator .
Step 2.11.2.5
Multiply by .
Step 2.11.2.6
Multiply by .
Step 2.11.3
Combine the numerators over the common denominator.
Step 2.11.4
Simplify each term.
Step 2.11.4.1
Multiply by .
Step 2.11.4.2
Multiply by .
Step 2.11.5
Simplify by adding and subtracting.
Step 2.11.5.1
Subtract from .
Step 2.11.5.2
Add and .
Step 2.11.6
The final answer is .
Step 2.12
The value at is .
Step 2.13
Graph the parabola using its properties and the selected points.
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 4