Enter a problem...
Pre-Algebra Examples
f(x)=√x4-81f(x)=√x4−81
Step 1
Step 1.1
Replace the variable xx with -3−3 in the expression.
f(-3)=√((-3)2+9)((-3)+3)((-3)-3)f(−3)=√((−3)2+9)((−3)+3)((−3)−3)
Step 1.2
Simplify the result.
Step 1.2.1
Raise -3−3 to the power of 22.
f(-3)=√(9+9)(-3+3)(-3-3)f(−3)=√(9+9)(−3+3)(−3−3)
Step 1.2.2
Add 99 and 99.
f(-3)=√18(-3+3)(-3-3)f(−3)=√18(−3+3)(−3−3)
Step 1.2.3
Add -3−3 and 33.
f(-3)=√18⋅(0(-3-3))f(−3)=√18⋅(0(−3−3))
Step 1.2.4
Combine exponents.
Step 1.2.4.1
Multiply 1818 by 00.
f(-3)=√0(-3-3)f(−3)=√0(−3−3)
Step 1.2.4.2
Multiply 00 by -3-3−3−3.
f(-3)=√0f(−3)=√0
f(-3)=√0f(−3)=√0
Step 1.2.5
Rewrite 00 as 0202.
f(-3)=√02f(−3)=√02
Step 1.2.6
Pull terms out from under the radical, assuming positive real numbers.
f(-3)=0f(−3)=0
Step 1.2.7
The final answer is 00.
00
00
Step 1.3
The yy value at x=-3x=−3 is 00.
y=0y=0
y=0y=0
Step 2
Step 2.1
Replace the variable xx with -4−4 in the expression.
f(-4)=√((-4)2+9)((-4)+3)((-4)-3)f(−4)=√((−4)2+9)((−4)+3)((−4)−3)
Step 2.2
Simplify the result.
Step 2.2.1
Raise -4−4 to the power of 22.
f(-4)=√(16+9)(-4+3)(-4-3)f(−4)=√(16+9)(−4+3)(−4−3)
Step 2.2.2
Add 1616 and 99.
f(-4)=√25(-4+3)(-4-3)f(−4)=√25(−4+3)(−4−3)
Step 2.2.3
Add -4−4 and 33.
f(-4)=√25⋅(-1(-4-3))f(−4)=√25⋅(−1(−4−3))
Step 2.2.4
Combine exponents.
Step 2.2.4.1
Factor out negative.
f(-4)=√-(25(-4-3))f(−4)=√−(25(−4−3))
Step 2.2.4.2
Multiply 2525 by -1−1.
f(-4)=√-25(-4-3)f(−4)=√−25(−4−3)
f(-4)=√-25(-4-3)f(−4)=√−25(−4−3)
Step 2.2.5
Subtract 33 from -4−4.
f(-4)=√-25⋅-7f(−4)=√−25⋅−7
Step 2.2.6
Multiply -25−25 by -7−7.
f(-4)=√175f(−4)=√175
Step 2.2.7
Rewrite 175175 as 52⋅752⋅7.
Step 2.2.7.1
Factor 2525 out of 175175.
f(-4)=√25(7)f(−4)=√25(7)
Step 2.2.7.2
Rewrite 2525 as 5252.
f(-4)=√52⋅7f(−4)=√52⋅7
f(-4)=√52⋅7f(−4)=√52⋅7
Step 2.2.8
Pull terms out from under the radical.
f(-4)=5√7f(−4)=5√7
Step 2.2.9
The final answer is 5√75√7.
5√75√7
5√75√7
Step 2.3
The yy value at x=-4x=−4 is 5√75√7.
y=5√7y=5√7
y=5√7y=5√7
Step 3
Step 3.1
Replace the variable xx with -5−5 in the expression.
f(-5)=√((-5)2+9)((-5)+3)((-5)-3)f(−5)=√((−5)2+9)((−5)+3)((−5)−3)
Step 3.2
Simplify the result.
Step 3.2.1
Raise -5−5 to the power of 22.
f(-5)=√(25+9)(-5+3)(-5-3)f(−5)=√(25+9)(−5+3)(−5−3)
Step 3.2.2
Add 2525 and 99.
f(-5)=√34(-5+3)(-5-3)f(−5)=√34(−5+3)(−5−3)
Step 3.2.3
Add -5−5 and 33.
f(-5)=√34⋅(-2(-5-3))f(−5)=√34⋅(−2(−5−3))
Step 3.2.4
Multiply 3434 by -2−2.
f(-5)=√-68(-5-3)f(−5)=√−68(−5−3)
Step 3.2.5
Subtract 33 from -5−5.
f(-5)=√-68⋅-8f(−5)=√−68⋅−8
Step 3.2.6
Multiply -68−68 by -8−8.
f(-5)=√544f(−5)=√544
Step 3.2.7
Rewrite 544544 as 42⋅3442⋅34.
Step 3.2.7.1
Factor 1616 out of 544544.
f(-5)=√16(34)f(−5)=√16(34)
Step 3.2.7.2
Rewrite 1616 as 4242.
f(-5)=√42⋅34f(−5)=√42⋅34
f(-5)=√42⋅34f(−5)=√42⋅34
Step 3.2.8
Pull terms out from under the radical.
f(-5)=4√34f(−5)=4√34
Step 3.2.9
The final answer is 4√344√34.
4√344√34
4√344√34
Step 3.3
The yy value at x=-5x=−5 is 4√344√34.
y=4√34y=4√34
y=4√34y=4√34
Step 4
Step 4.1
Replace the variable xx with 33 in the expression.
f(3)=√((3)2+9)((3)+3)((3)-3)f(3)=√((3)2+9)((3)+3)((3)−3)
Step 4.2
Simplify the result.
Step 4.2.1
Raise 33 to the power of 22.
f(3)=√(9+9)(3+3)(3-3)f(3)=√(9+9)(3+3)(3−3)
Step 4.2.2
Add 99 and 99.
f(3)=√18(3+3)(3-3)f(3)=√18(3+3)(3−3)
Step 4.2.3
Add 33 and 33.
f(3)=√18⋅(6(3-3))f(3)=√18⋅(6(3−3))
Step 4.2.4
Multiply 1818 by 66.
f(3)=√108(3-3)f(3)=√108(3−3)
Step 4.2.5
Subtract 33 from 33.
f(3)=√108⋅0f(3)=√108⋅0
Step 4.2.6
Multiply 108108 by 00.
f(3)=√0f(3)=√0
Step 4.2.7
Rewrite 00 as 0202.
f(3)=√02f(3)=√02
Step 4.2.8
Pull terms out from under the radical, assuming positive real numbers.
f(3)=0f(3)=0
Step 4.2.9
The final answer is 00.
00
00
Step 4.3
The yy value at x=3x=3 is 00.
y=0y=0
y=0y=0
Step 5
Step 5.1
Replace the variable xx with 44 in the expression.
f(4)=√((4)2+9)((4)+3)((4)-3)f(4)=√((4)2+9)((4)+3)((4)−3)
Step 5.2
Simplify the result.
Step 5.2.1
Raise 44 to the power of 22.
f(4)=√(16+9)(4+3)(4-3)f(4)=√(16+9)(4+3)(4−3)
Step 5.2.2
Add 1616 and 99.
f(4)=√25(4+3)(4-3)f(4)=√25(4+3)(4−3)
Step 5.2.3
Add 44 and 33.
f(4)=√25⋅(7(4-3))f(4)=√25⋅(7(4−3))
Step 5.2.4
Multiply 2525 by 77.
f(4)=√175(4-3)f(4)=√175(4−3)
Step 5.2.5
Subtract 33 from 44.
f(4)=√175⋅1f(4)=√175⋅1
Step 5.2.6
Multiply 175175 by 11.
f(4)=√175f(4)=√175
Step 5.2.7
Rewrite 175175 as 52⋅752⋅7.
Step 5.2.7.1
Factor 2525 out of 175175.
f(4)=√25(7)f(4)=√25(7)
Step 5.2.7.2
Rewrite 2525 as 5252.
f(4)=√52⋅7f(4)=√52⋅7
f(4)=√52⋅7f(4)=√52⋅7
Step 5.2.8
Pull terms out from under the radical.
f(4)=5√7f(4)=5√7
Step 5.2.9
The final answer is 5√75√7.
5√75√7
5√7
Step 5.3
The y value at x=4 is 5√7.
y=5√7
y=5√7
Step 6
Step 6.1
Replace the variable x with 5 in the expression.
f(5)=√((5)2+9)((5)+3)((5)-3)
Step 6.2
Simplify the result.
Step 6.2.1
Raise 5 to the power of 2.
f(5)=√(25+9)(5+3)(5-3)
Step 6.2.2
Add 25 and 9.
f(5)=√34(5+3)(5-3)
Step 6.2.3
Add 5 and 3.
f(5)=√34⋅(8(5-3))
Step 6.2.4
Multiply 34 by 8.
f(5)=√272(5-3)
Step 6.2.5
Subtract 3 from 5.
f(5)=√272⋅2
Step 6.2.6
Multiply 272 by 2.
f(5)=√544
Step 6.2.7
Rewrite 544 as 42⋅34.
Step 6.2.7.1
Factor 16 out of 544.
f(5)=√16(34)
Step 6.2.7.2
Rewrite 16 as 42.
f(5)=√42⋅34
f(5)=√42⋅34
Step 6.2.8
Pull terms out from under the radical.
f(5)=4√34
Step 6.2.9
The final answer is 4√34.
4√34
4√34
Step 6.3
The y value at x=5 is 4√34.
y=4√34
y=4√34
Step 7
List the points to graph.
(-3,0),(-4,13.22875655),(-5,23.32380757),(3,0),(4,13.22875655),(5,23.32380757)
Step 8
Select a few points to graph.
xy-523.324-413.229-3030413.229523.324
Step 9
