Pre-Algebra Examples

Graph f(x) = square root of x^4-81
f(x)=x4-81f(x)=x481
Step 1
Find the yy value at x=-3x=3.
Tap for more steps...
Step 1.1
Replace the variable xx with -33 in the expression.
f(-3)=((-3)2+9)((-3)+3)((-3)-3)f(3)=((3)2+9)((3)+3)((3)3)
Step 1.2
Simplify the result.
Tap for more steps...
Step 1.2.1
Raise -33 to the power of 22.
f(-3)=(9+9)(-3+3)(-3-3)f(3)=(9+9)(3+3)(33)
Step 1.2.2
Add 99 and 99.
f(-3)=18(-3+3)(-3-3)f(3)=18(3+3)(33)
Step 1.2.3
Add -33 and 33.
f(-3)=18(0(-3-3))f(3)=18(0(33))
Step 1.2.4
Combine exponents.
Tap for more steps...
Step 1.2.4.1
Multiply 1818 by 00.
f(-3)=0(-3-3)f(3)=0(33)
Step 1.2.4.2
Multiply 00 by -3-333.
f(-3)=0f(3)=0
f(-3)=0f(3)=0
Step 1.2.5
Rewrite 00 as 0202.
f(-3)=02f(3)=02
Step 1.2.6
Pull terms out from under the radical, assuming positive real numbers.
f(-3)=0f(3)=0
Step 1.2.7
The final answer is 00.
00
00
Step 1.3
The yy value at x=-3x=3 is 00.
y=0y=0
y=0y=0
Step 2
Find the yy value at x=-4x=4.
Tap for more steps...
Step 2.1
Replace the variable xx with -44 in the expression.
f(-4)=((-4)2+9)((-4)+3)((-4)-3)f(4)=((4)2+9)((4)+3)((4)3)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Raise -44 to the power of 22.
f(-4)=(16+9)(-4+3)(-4-3)f(4)=(16+9)(4+3)(43)
Step 2.2.2
Add 1616 and 99.
f(-4)=25(-4+3)(-4-3)f(4)=25(4+3)(43)
Step 2.2.3
Add -44 and 33.
f(-4)=25(-1(-4-3))f(4)=25(1(43))
Step 2.2.4
Combine exponents.
Tap for more steps...
Step 2.2.4.1
Factor out negative.
f(-4)=-(25(-4-3))f(4)=(25(43))
Step 2.2.4.2
Multiply 2525 by -11.
f(-4)=-25(-4-3)f(4)=25(43)
f(-4)=-25(-4-3)f(4)=25(43)
Step 2.2.5
Subtract 33 from -44.
f(-4)=-25-7f(4)=257
Step 2.2.6
Multiply -2525 by -77.
f(-4)=175f(4)=175
Step 2.2.7
Rewrite 175175 as 527527.
Tap for more steps...
Step 2.2.7.1
Factor 2525 out of 175175.
f(-4)=25(7)f(4)=25(7)
Step 2.2.7.2
Rewrite 2525 as 5252.
f(-4)=527f(4)=527
f(-4)=527f(4)=527
Step 2.2.8
Pull terms out from under the radical.
f(-4)=57f(4)=57
Step 2.2.9
The final answer is 5757.
5757
5757
Step 2.3
The yy value at x=-4x=4 is 5757.
y=57y=57
y=57y=57
Step 3
Find the yy value at x=-5x=5.
Tap for more steps...
Step 3.1
Replace the variable xx with -55 in the expression.
f(-5)=((-5)2+9)((-5)+3)((-5)-3)f(5)=((5)2+9)((5)+3)((5)3)
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Raise -55 to the power of 22.
f(-5)=(25+9)(-5+3)(-5-3)f(5)=(25+9)(5+3)(53)
Step 3.2.2
Add 2525 and 99.
f(-5)=34(-5+3)(-5-3)f(5)=34(5+3)(53)
Step 3.2.3
Add -55 and 33.
f(-5)=34(-2(-5-3))f(5)=34(2(53))
Step 3.2.4
Multiply 3434 by -22.
f(-5)=-68(-5-3)f(5)=68(53)
Step 3.2.5
Subtract 33 from -55.
f(-5)=-68-8f(5)=688
Step 3.2.6
Multiply -6868 by -88.
f(-5)=544f(5)=544
Step 3.2.7
Rewrite 544544 as 42344234.
Tap for more steps...
Step 3.2.7.1
Factor 1616 out of 544544.
f(-5)=16(34)f(5)=16(34)
Step 3.2.7.2
Rewrite 1616 as 4242.
f(-5)=4234f(5)=4234
f(-5)=4234f(5)=4234
Step 3.2.8
Pull terms out from under the radical.
f(-5)=434f(5)=434
Step 3.2.9
The final answer is 434434.
434434
434434
Step 3.3
The yy value at x=-5x=5 is 434434.
y=434y=434
y=434y=434
Step 4
Find the yy value at x=3x=3.
Tap for more steps...
Step 4.1
Replace the variable xx with 33 in the expression.
f(3)=((3)2+9)((3)+3)((3)-3)f(3)=((3)2+9)((3)+3)((3)3)
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Raise 33 to the power of 22.
f(3)=(9+9)(3+3)(3-3)f(3)=(9+9)(3+3)(33)
Step 4.2.2
Add 99 and 99.
f(3)=18(3+3)(3-3)f(3)=18(3+3)(33)
Step 4.2.3
Add 33 and 33.
f(3)=18(6(3-3))f(3)=18(6(33))
Step 4.2.4
Multiply 1818 by 66.
f(3)=108(3-3)f(3)=108(33)
Step 4.2.5
Subtract 33 from 33.
f(3)=1080f(3)=1080
Step 4.2.6
Multiply 108108 by 00.
f(3)=0f(3)=0
Step 4.2.7
Rewrite 00 as 0202.
f(3)=02f(3)=02
Step 4.2.8
Pull terms out from under the radical, assuming positive real numbers.
f(3)=0f(3)=0
Step 4.2.9
The final answer is 00.
00
00
Step 4.3
The yy value at x=3x=3 is 00.
y=0y=0
y=0y=0
Step 5
Find the yy value at x=4x=4.
Tap for more steps...
Step 5.1
Replace the variable xx with 44 in the expression.
f(4)=((4)2+9)((4)+3)((4)-3)f(4)=((4)2+9)((4)+3)((4)3)
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Raise 44 to the power of 22.
f(4)=(16+9)(4+3)(4-3)f(4)=(16+9)(4+3)(43)
Step 5.2.2
Add 1616 and 99.
f(4)=25(4+3)(4-3)f(4)=25(4+3)(43)
Step 5.2.3
Add 44 and 33.
f(4)=25(7(4-3))f(4)=25(7(43))
Step 5.2.4
Multiply 2525 by 77.
f(4)=175(4-3)f(4)=175(43)
Step 5.2.5
Subtract 33 from 44.
f(4)=1751f(4)=1751
Step 5.2.6
Multiply 175175 by 11.
f(4)=175f(4)=175
Step 5.2.7
Rewrite 175175 as 527527.
Tap for more steps...
Step 5.2.7.1
Factor 2525 out of 175175.
f(4)=25(7)f(4)=25(7)
Step 5.2.7.2
Rewrite 2525 as 5252.
f(4)=527f(4)=527
f(4)=527f(4)=527
Step 5.2.8
Pull terms out from under the radical.
f(4)=57f(4)=57
Step 5.2.9
The final answer is 5757.
5757
57
Step 5.3
The y value at x=4 is 57.
y=57
y=57
Step 6
Find the y value at x=5.
Tap for more steps...
Step 6.1
Replace the variable x with 5 in the expression.
f(5)=((5)2+9)((5)+3)((5)-3)
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Raise 5 to the power of 2.
f(5)=(25+9)(5+3)(5-3)
Step 6.2.2
Add 25 and 9.
f(5)=34(5+3)(5-3)
Step 6.2.3
Add 5 and 3.
f(5)=34(8(5-3))
Step 6.2.4
Multiply 34 by 8.
f(5)=272(5-3)
Step 6.2.5
Subtract 3 from 5.
f(5)=2722
Step 6.2.6
Multiply 272 by 2.
f(5)=544
Step 6.2.7
Rewrite 544 as 4234.
Tap for more steps...
Step 6.2.7.1
Factor 16 out of 544.
f(5)=16(34)
Step 6.2.7.2
Rewrite 16 as 42.
f(5)=4234
f(5)=4234
Step 6.2.8
Pull terms out from under the radical.
f(5)=434
Step 6.2.9
The final answer is 434.
434
434
Step 6.3
The y value at x=5 is 434.
y=434
y=434
Step 7
List the points to graph.
(-3,0),(-4,13.22875655),(-5,23.32380757),(3,0),(4,13.22875655),(5,23.32380757)
Step 8
Select a few points to graph.
xy-523.324-413.229-3030413.229523.324
Step 9
image of graph
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]