Pre-Algebra Examples

Graph C(x)=(360+30x+0.1x^2)/x
C(x)=360+30x+0.1x2xC(x)=360+30x+0.1x2x
Step 1
Find where the expression 0.1(3600+300x+x2)x0.1(3600+300x+x2)x is undefined.
x=0x=0
Step 2
Consider the rational function R(x)=axnbxmR(x)=axnbxm where nn is the degree of the numerator and mm is the degree of the denominator.
1. If n<mn<m, then the x-axis, y=0y=0, is the horizontal asymptote.
2. If n=mn=m, then the horizontal asymptote is the line y=aby=ab.
3. If n>mn>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 3
Find nn and mm.
n=2n=2
m=1m=1
Step 4
Since n>mn>m, there is no horizontal asymptote.
No Horizontal Asymptotes
Step 5
Find the oblique asymptote using polynomial division.
Tap for more steps...
Step 5.1
Factor 0.10.1 out of 360+30x+0.1x2360+30x+0.1x2.
Tap for more steps...
Step 5.1.1
Factor 0.10.1 out of 360360.
0.13600+30x+0.1x2x0.13600+30x+0.1x2x
Step 5.1.2
Factor 0.10.1 out of 30x30x.
0.13600+0.1(300x)+0.1x2x0.13600+0.1(300x)+0.1x2x
Step 5.1.3
Factor 0.10.1 out of 0.13600+0.1(300x)0.13600+0.1(300x).
0.1(3600+300x)+0.1x2x0.1(3600+300x)+0.1x2x
Step 5.1.4
Factor 0.10.1 out of 0.1(3600+300x)+0.1x20.1(3600+300x)+0.1x2.
0.1(3600+300x+x2)x0.1(3600+300x+x2)x
0.1(3600+300x+x2)x0.1(3600+300x+x2)x
Step 5.2
Expand 0.1(3600+300x+x2)0.1(3600+300x+x2).
Tap for more steps...
Step 5.2.1
Apply the distributive property.
0.1(3600+300x)+0.1x2x0.1(3600+300x)+0.1x2x
Step 5.2.2
Apply the distributive property.
0.13600+0.1(300x)+0.1x2x0.13600+0.1(300x)+0.1x2x
Step 5.2.3
Remove parentheses.
0.13600+0.1(300x)+0.1x2x0.13600+0.1(300x)+0.1x2x
Step 5.2.4
Multiply 0.10.1 by 36003600.
360+0.1(300x)+0.1x2x360+0.1(300x)+0.1x2x
Step 5.2.5
Multiply 0.10.1 by 300300.
360+30x+0.1x2x360+30x+0.1x2x
Step 5.2.6
Reorder 360360 and 30x30x.
30x+360+0.1x2x30x+360+0.1x2x
Step 5.2.7
Move 360360.
30x+0.1x2+360x30x+0.1x2+360x
Step 5.2.8
Reorder 30x30x and 0.1x20.1x2.
0.1x2+30x+360x0.1x2+30x+360x
0.1x2+30x+360x0.1x2+30x+360x
Step 5.3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx+000.1x20.1x2+30x30x+360360
Step 5.4
Divide the highest order term in the dividend 0.1x20.1x2 by the highest order term in divisor xx.
0.1x0.1x
xx+000.1x20.1x2+30x30x+360360
Step 5.5
Multiply the new quotient term by the divisor.
0.1x0.1x
xx+000.1x20.1x2+30x30x+360360
+0.1x20.1x2+00
Step 5.6
The expression needs to be subtracted from the dividend, so change all the signs in 0.1x2+00.1x2+0
0.1x0.1x
xx+000.1x20.1x2+30x30x+360360
-0.1x20.1x2-00
Step 5.7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
0.1x0.1x
xx+000.1x20.1x2+30x30x+360360
-0.1x20.1x2-00
+30x30x
Step 5.8
Pull the next terms from the original dividend down into the current dividend.
0.1x0.1x
xx+000.1x20.1x2+30x30x+360360
-0.1x20.1x2-0
+30x+360
Step 5.9
Divide the highest order term in the dividend 30x by the highest order term in divisor x.
0.1x+30
x+00.1x2+30x+360
-0.1x2-0
+30x+360
Step 5.10
Multiply the new quotient term by the divisor.
0.1x+30
x+00.1x2+30x+360
-0.1x2-0
+30x+360
+30x+0
Step 5.11
The expression needs to be subtracted from the dividend, so change all the signs in 30x+0
0.1x+30
x+00.1x2+30x+360
-0.1x2-0
+30x+360
-30x-0
Step 5.12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
0.1x+30
x+00.1x2+30x+360
-0.1x2-0
+30x+360
-30x-0
+360
Step 5.13
The final answer is the quotient plus the remainder over the divisor.
0.1x+30+360x
Step 5.14
The oblique asymptote is the polynomial portion of the long division result.
y=0.1x+30
y=0.1x+30
Step 6
This is the set of all asymptotes.
Vertical Asymptotes: x=0
No Horizontal Asymptotes
Oblique Asymptotes: y=0.1x+30
Step 7
 [x2  12  π  xdx ]