Enter a problem...
Pre-Algebra Examples
f(x)<525x+3f(x)<525x+3
Step 1
Subtract f(x)f(x) from both sides of the inequality.
0<525x+3-f(x)0<525x+3−f(x)
Step 2
Step 2.1
Rewrite in slope-intercept form.
Step 2.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.1.2
Rewrite so xx is on the left side of the inequality.
525x+3-f(x)>0525x+3−f(x)>0
Step 2.1.3
Move all terms not containing xx to the right side of the inequality.
Step 2.1.3.1
Subtract 33 from both sides of the inequality.
525x-f(x)>-3525x−f(x)>−3
Step 2.1.3.2
Add f(x)f(x) to both sides of the inequality.
525x>-3+f(x)525x>−3+f(x)
525x>-3+f(x)525x>−3+f(x)
Step 2.1.4
Multiply both sides by xx.
525xx=(-3+f(x))x525xx=(−3+f(x))x
Step 2.1.5
Simplify.
Step 2.1.5.1
Simplify the left side.
Step 2.1.5.1.1
Cancel the common factor of xx.
Step 2.1.5.1.1.1
Cancel the common factor.
525xx=(-3+f(x))x
Step 2.1.5.1.1.2
Rewrite the expression.
525=(-3+f(x))x
525=(-3+f(x))x
525=(-3+f(x))x
Step 2.1.5.2
Simplify the right side.
Step 2.1.5.2.1
Simplify (-3+f(x))x.
Step 2.1.5.2.1.1
Apply the distributive property.
525=-3x+f(x)x
Step 2.1.5.2.1.2
Reorder factors in -3x+f(x)x.
525=-3x+xf(x)
525=-3x+xf(x)
525=-3x+xf(x)
525=-3x+xf(x)
Step 2.1.6
Solve for x.
Step 2.1.6.1
Rewrite the equation as -3x+xf(x)=525.
-3x+xf(x)=525
Step 2.1.6.2
Multiply x by x by adding the exponents.
Step 2.1.6.2.1
Move x.
-3x+x⋅xf=525
Step 2.1.6.2.2
Multiply x by x.
-3x+x2f=525
-3x+x2f=525
Step 2.1.6.3
Subtract 525 from both sides of the equation.
-3x+x2f-525=0
Step 2.1.6.4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2.1.6.5
Substitute the values a=f, b=-3, and c=-525 into the quadratic formula and solve for x.
3±√(-3)2-4⋅(f⋅-525)2f
Step 2.1.6.6
Simplify the numerator.
Step 2.1.6.6.1
Raise -3 to the power of 2.
x=3±√9-4⋅f⋅-5252f
Step 2.1.6.6.2
Multiply -525 by -4.
x=3±√9+2100f2f
Step 2.1.6.6.3
Factor 3 out of 9+2100f.
Step 2.1.6.6.3.1
Factor 3 out of 9.
x=3±√3(3)+2100f2f
Step 2.1.6.6.3.2
Factor 3 out of 2100f.
x=3±√3(3)+3(700f)2f
Step 2.1.6.6.3.3
Factor 3 out of 3(3)+3(700f).
x=3±√3(3+700f)2f
x=3±√3(3+700f)2f
x=3±√3(3+700f)2f
Step 2.1.6.7
Change the ± to +.
x=3+√3(3+700f)2f
Step 2.1.6.8
Simplify the expression to solve for the - portion of the ±.
Step 2.1.6.8.1
Simplify the numerator.
Step 2.1.6.8.1.1
Raise -3 to the power of 2.
x=3±√9-4⋅f⋅-5252f
Step 2.1.6.8.1.2
Multiply -525 by -4.
x=3±√9+2100f2f
Step 2.1.6.8.1.3
Factor 3 out of 9+2100f.
Step 2.1.6.8.1.3.1
Factor 3 out of 9.
x=3±√3(3)+2100f2f
Step 2.1.6.8.1.3.2
Factor 3 out of 2100f.
x=3±√3(3)+3(700f)2f
Step 2.1.6.8.1.3.3
Factor 3 out of 3(3)+3(700f).
x=3±√3(3+700f)2f
x=3±√3(3+700f)2f
x=3±√3(3+700f)2f
Step 2.1.6.8.2
Change the ± to -.
x=3-√3(3+700f)2f
x=3-√3(3+700f)2f
Step 2.1.6.9
The final answer is the combination of both solutions.
x=3+√3(3+700f)2f
x=3-√3(3+700f)2f
x=3+√3(3+700f)2f
x=3-√3(3+700f)2f
Step 2.1.7
Rewrite in slope-intercept form.
=3+√3(3+700)2
=f+3-√3(3+700f)2f
=3+√3(3+700)2
=f+3-√3(3+700f)2f
Step 2.2
Since the equation is a vertical line, it does not cross the y-axis.
No y-intercept
Step 2.3
Since the equation is a vertical line, the slope is infinite.
m=∞
m=∞
Step 3
Graph a dashed line, then shade the area below the boundary line since y is less than 525x+3-f(x).
0<525x+3-f(x)
Step 4