Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Reorder terms.
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Rewrite as .
Step 1.2.1.2
Expand using the FOIL Method.
Step 1.2.1.2.1
Apply the distributive property.
Step 1.2.1.2.2
Apply the distributive property.
Step 1.2.1.2.3
Apply the distributive property.
Step 1.2.1.3
Simplify and combine like terms.
Step 1.2.1.3.1
Simplify each term.
Step 1.2.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.2.1.3.1.2
Multiply by by adding the exponents.
Step 1.2.1.3.1.2.1
Move .
Step 1.2.1.3.1.2.2
Multiply by .
Step 1.2.1.3.1.3
Multiply by .
Step 1.2.1.3.1.4
Multiply by .
Step 1.2.1.3.1.5
Multiply by .
Step 1.2.1.3.1.6
Multiply by .
Step 1.2.1.3.2
Subtract from .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Cancel the common factor of and .
Step 1.2.4.2.1.1
Factor out of .
Step 1.2.4.2.1.2
Cancel the common factors.
Step 1.2.4.2.1.2.1
Factor out of .
Step 1.2.4.2.1.2.2
Cancel the common factor.
Step 1.2.4.2.1.2.3
Rewrite the expression.
Step 1.2.4.2.2
Cancel the common factor of and .
Step 1.2.4.2.2.1
Factor out of .
Step 1.2.4.2.2.2
Cancel the common factors.
Step 1.2.4.2.2.2.1
Factor out of .
Step 1.2.4.2.2.2.2
Cancel the common factor.
Step 1.2.4.2.2.2.3
Rewrite the expression.
Step 1.2.4.2.3
Move the negative in front of the fraction.
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Raise to the power of .
Step 1.2.5.2.1.2
Multiply by .
Step 1.2.5.2.1.3
Cancel the common factor of .
Step 1.2.5.2.1.3.1
Cancel the common factor.
Step 1.2.5.2.1.3.2
Rewrite the expression.
Step 1.2.5.2.1.4
Multiply by .
Step 1.2.5.2.2
Subtract from .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Since the value of is positive, the parabola opens up.
Opens Up
Step 4
Find the vertex .
Step 5
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 5.2
Substitute the value of into the formula.
Step 5.3
Multiply by .
Step 6
Step 6.1
The focus of a parabola can be found by adding to the y-coordinate if the parabola opens up or down.
Step 6.2
Substitute the known values of , , and into the formula and simplify.
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 8
Step 8.1
The directrix of a parabola is the horizontal line found by subtracting from the y-coordinate of the vertex if the parabola opens up or down.
Step 8.2
Substitute the known values of and into the formula and simplify.
Step 9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 10