Enter a problem...
Pre-Algebra Examples
16x2-9y2+64x-54-161=0
Step 1
Step 1.1
Move all terms not containing a variable to the right side of the equation.
Step 1.1.1
Add 54 to both sides of the equation.
16x2-9y2+64x-161=54
Step 1.1.2
Add 161 to both sides of the equation.
16x2-9y2+64x=54+161
Step 1.1.3
Add 54 and 161.
16x2-9y2+64x=215
16x2-9y2+64x=215
Step 1.2
Complete the square for 16x2+64x.
Step 1.2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=16
b=64
c=0
Step 1.2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.2.3
Find the value of d using the formula d=b2a.
Step 1.2.3.1
Substitute the values of a and b into the formula d=b2a.
d=642⋅16
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Cancel the common factor of 64 and 2.
Step 1.2.3.2.1.1
Factor 2 out of 64.
d=2⋅322⋅16
Step 1.2.3.2.1.2
Cancel the common factors.
Step 1.2.3.2.1.2.1
Factor 2 out of 2⋅16.
d=2⋅322(16)
Step 1.2.3.2.1.2.2
Cancel the common factor.
d=2⋅322⋅16
Step 1.2.3.2.1.2.3
Rewrite the expression.
d=3216
d=3216
d=3216
Step 1.2.3.2.2
Cancel the common factor of 32 and 16.
Step 1.2.3.2.2.1
Factor 16 out of 32.
d=16⋅216
Step 1.2.3.2.2.2
Cancel the common factors.
Step 1.2.3.2.2.2.1
Factor 16 out of 16.
d=16⋅216(1)
Step 1.2.3.2.2.2.2
Cancel the common factor.
d=16⋅216⋅1
Step 1.2.3.2.2.2.3
Rewrite the expression.
d=21
Step 1.2.3.2.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
d=2
Step 1.2.4
Find the value of e using the formula e=c-b24a.
Step 1.2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-6424⋅16
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Simplify each term.
Step 1.2.4.2.1.1
Raise 64 to the power of 2.
e=0-40964⋅16
Step 1.2.4.2.1.2
Multiply 4 by 16.
e=0-409664
Step 1.2.4.2.1.3
Divide 4096 by 64.
e=0-1⋅64
Step 1.2.4.2.1.4
Multiply -1 by 64.
e=0-64
e=0-64
Step 1.2.4.2.2
Subtract 64 from 0.
e=-64
e=-64
e=-64
Step 1.2.5
Substitute the values of a, d, and e into the vertex form 16(x+2)2-64.
16(x+2)2-64
16(x+2)2-64
Step 1.3
Substitute 16(x+2)2-64 for 16x2+64x in the equation 16x2-9y2+64x=215.
16(x+2)2-64-9y2=215
Step 1.4
Move -64 to the right side of the equation by adding 64 to both sides.
16(x+2)2-9y2=215+64
Step 1.5
Add 215 and 64.
16(x+2)2-9y2=279
Step 1.6
Divide each term by 279 to make the right side equal to one.
16(x+2)2279-9y2279=279279
Step 1.7
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x+2)227916-y231=1
(x+2)227916-y231=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.
(x-h)2a2-(y-k)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable h represents the x-offset from the origin, k represents the y-offset from origin, a.
a=3√314
b=√31
k=0
h=-2
Step 4
The center of a hyperbola follows the form of (h,k). Substitute in the values of h and k.
(-2,0)
Step 5
Step 5.1
Find the distance from the center to a focus of the hyperbola by using the following formula.
√a2+b2
Step 5.2
Substitute the values of a and b in the formula.
√(3√314)2+(√31)2
Step 5.3
Simplify.
Step 5.3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 5.3.1.1
Apply the product rule to 3√314.
√(3√31)242+(√31)2
Step 5.3.1.2
Apply the product rule to 3√31.
√32√31242+(√31)2
√32√31242+(√31)2
Step 5.3.2
Simplify the numerator.
Step 5.3.2.1
Raise 3 to the power of 2.
√9√31242+(√31)2
Step 5.3.2.2
Rewrite √312 as 31.
Step 5.3.2.2.1
Use n√ax=axn to rewrite √31 as 3112.
√9(3112)242+(√31)2
Step 5.3.2.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√9⋅3112⋅242+(√31)2
Step 5.3.2.2.3
Combine 12 and 2.
√9⋅312242+(√31)2
Step 5.3.2.2.4
Cancel the common factor of 2.
Step 5.3.2.2.4.1
Cancel the common factor.
√9⋅312242+(√31)2
Step 5.3.2.2.4.2
Rewrite the expression.
√9⋅31142+(√31)2
√9⋅31142+(√31)2
Step 5.3.2.2.5
Evaluate the exponent.
√9⋅3142+(√31)2
√9⋅3142+(√31)2
√9⋅3142+(√31)2
Step 5.3.3
Simplify by cancelling exponent with radical.
Step 5.3.3.1
Raise 4 to the power of 2.
√9⋅3116+(√31)2
Step 5.3.3.2
Multiply 9 by 31.
√27916+(√31)2
Step 5.3.3.3
Rewrite √312 as 31.
Step 5.3.3.3.1
Use n√ax=axn to rewrite √31 as 3112.
√27916+(3112)2
Step 5.3.3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
√27916+3112⋅2
Step 5.3.3.3.3
Combine 12 and 2.
√27916+3122
Step 5.3.3.3.4
Cancel the common factor of 2.
Step 5.3.3.3.4.1
Cancel the common factor.
√27916+3122
Step 5.3.3.3.4.2
Rewrite the expression.
√27916+311
√27916+311
Step 5.3.3.3.5
Evaluate the exponent.
√27916+31
√27916+31
√27916+31
Step 5.3.4
To write 31 as a fraction with a common denominator, multiply by 1616.
√27916+31⋅1616
Step 5.3.5
Combine 31 and 1616.
√27916+31⋅1616
Step 5.3.6
Combine the numerators over the common denominator.
√279+31⋅1616
Step 5.3.7
Simplify the numerator.
Step 5.3.7.1
Multiply 31 by 16.
√279+49616
Step 5.3.7.2
Add 279 and 496.
√77516
√77516
Step 5.3.8
Rewrite √77516 as √775√16.
√775√16
Step 5.3.9
Simplify the numerator.
Step 5.3.9.1
Rewrite 775 as 52⋅31.
Step 5.3.9.1.1
Factor 25 out of 775.
√25(31)√16
Step 5.3.9.1.2
Rewrite 25 as 52.
√52⋅31√16
√52⋅31√16
Step 5.3.9.2
Pull terms out from under the radical.
5√31√16
5√31√16
Step 5.3.10
Simplify the denominator.
Step 5.3.10.1
Rewrite 16 as 42.
5√31√42
Step 5.3.10.2
Pull terms out from under the radical, assuming positive real numbers.
5√314
5√314
5√314
5√314
Step 6
Step 6.1
The first vertex of a hyperbola can be found by adding a to h.
(h+a,k)
Step 6.2
Substitute the known values of h, a, and k into the formula and simplify.
(-2+3√314,0)
Step 6.3
The second vertex of a hyperbola can be found by subtracting a from h.
(h-a,k)
Step 6.4
Substitute the known values of h, a, and k into the formula and simplify.
(-2-3√314,0)
Step 6.5
The vertices of a hyperbola follow the form of (h±a,k). Hyperbolas have two vertices.
(-2+3√314,0),(-2-3√314,0)
(-2+3√314,0),(-2-3√314,0)
Step 7
Step 7.1
The first focus of a hyperbola can be found by adding c to h.
(h+c,k)
Step 7.2
Substitute the known values of h, c, and k into the formula and simplify.
(-2+5√314,0)
Step 7.3
The second focus of a hyperbola can be found by subtracting c from h.
(h-c,k)
Step 7.4
Substitute the known values of h, c, and k into the formula and simplify.
(-2-5√314,0)
Step 7.5
The foci of a hyperbola follow the form of (h±√a2+b2,k). Hyperbolas have two foci.
(-2+5√314,0),(-2-5√314,0)
(-2+5√314,0),(-2-5√314,0)
Step 8
Step 8.1
Find the eccentricity by using the following formula.
√a2+b2a
Step 8.2
Substitute the values of a and b into the formula.
√(3√314)2+(√31)23√314
Step 8.3
Simplify.
Step 8.3.1
Multiply the numerator by the reciprocal of the denominator.
√(3√314)2+√31243√31
Step 8.3.2
Use the power rule (ab)n=anbn to distribute the exponent.
Step 8.3.2.1
Apply the product rule to 3√314.
√(3√31)242+√31243√31
Step 8.3.2.2
Apply the product rule to 3√31.
√32√31242+√31243√31
√32√31242+√31243√31
Step 8.3.3
Simplify the numerator.
Step 8.3.3.1
Raise 3 to the power of 2.
√9√31242+√31243√31
Step 8.3.3.2
Rewrite √312 as 31.
Step 8.3.3.2.1
Use n√ax=axn to rewrite √31 as 3112.
√9(3112)242+√31243√31
Step 8.3.3.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√9⋅3112⋅242+√31243√31
Step 8.3.3.2.3
Combine 12 and 2.
√9⋅312242+√31243√31
Step 8.3.3.2.4
Cancel the common factor of 2.
Step 8.3.3.2.4.1
Cancel the common factor.
√9⋅312242+√31243√31
Step 8.3.3.2.4.2
Rewrite the expression.
√9⋅31142+√31243√31
√9⋅31142+√31243√31
Step 8.3.3.2.5
Evaluate the exponent.
√9⋅3142+√31243√31
√9⋅3142+√31243√31
√9⋅3142+√31243√31
Step 8.3.4
Simplify by cancelling exponent with radical.
Step 8.3.4.1
Raise 4 to the power of 2.
√9⋅3116+√31243√31
Step 8.3.4.2
Multiply 9 by 31.
√27916+√31243√31
Step 8.3.4.3
Rewrite √312 as 31.
Step 8.3.4.3.1
Use n√ax=axn to rewrite √31 as 3112.
√27916+(3112)243√31
Step 8.3.4.3.2
Apply the power rule and multiply exponents, (am)n=amn.
√27916+3112⋅243√31
Step 8.3.4.3.3
Combine 12 and 2.
√27916+312243√31
Step 8.3.4.3.4
Cancel the common factor of 2.
Step 8.3.4.3.4.1
Cancel the common factor.
√27916+312243√31
Step 8.3.4.3.4.2
Rewrite the expression.
√27916+31143√31
√27916+31143√31
Step 8.3.4.3.5
Evaluate the exponent.
√27916+3143√31
√27916+3143√31
√27916+3143√31
Step 8.3.5
To write 31 as a fraction with a common denominator, multiply by 1616.
√27916+31⋅161643√31
Step 8.3.6
Combine 31 and 1616.
√27916+31⋅161643√31
Step 8.3.7
Combine the numerators over the common denominator.
√279+31⋅161643√31
Step 8.3.8
Simplify the numerator.
Step 8.3.8.1
Multiply 31 by 16.
√279+4961643√31
Step 8.3.8.2
Add 279 and 496.
√7751643√31
√7751643√31
Step 8.3.9
Rewrite √77516 as √775√16.
√775√16⋅43√31
Step 8.3.10
Simplify the numerator.
Step 8.3.10.1
Rewrite 775 as 52⋅31.
Step 8.3.10.1.1
Factor 25 out of 775.
√25(31)√16⋅43√31
Step 8.3.10.1.2
Rewrite 25 as 52.
√52⋅31√16⋅43√31
√52⋅31√16⋅43√31
Step 8.3.10.2
Pull terms out from under the radical.
5√31√16⋅43√31
5√31√16⋅43√31
Step 8.3.11
Simplify the denominator.
Step 8.3.11.1
Rewrite 16 as 42.
5√31√42⋅43√31
Step 8.3.11.2
Pull terms out from under the radical, assuming positive real numbers.
5√314⋅43√31
5√314⋅43√31
Step 8.3.12
Simplify terms.
Step 8.3.12.1
Cancel the common factor of √31.
Step 8.3.12.1.1
Factor √31 out of 5√31.
√31⋅54⋅43√31
Step 8.3.12.1.2
Factor √31 out of 3√31.
√31⋅54⋅4√31⋅3
Step 8.3.12.1.3
Cancel the common factor.
√31⋅54⋅4√31⋅3
Step 8.3.12.1.4
Rewrite the expression.
54⋅43
54⋅43
Step 8.3.12.2
Cancel the common factor of 4.
Step 8.3.12.2.1
Cancel the common factor.
54⋅43
Step 8.3.12.2.2
Rewrite the expression.
5(13)
5(13)
Step 8.3.12.3
Combine 5 and 13.
53
53
53
53
Step 9
Step 9.1
Find the value of the focal parameter of the hyperbola by using the following formula.
b2√a2+b2
Step 9.2
Substitute the values of b and √a2+b2 in the formula.
√3125√314
Step 9.3
Simplify.
Step 9.3.1
Cancel the common factor of √312 and √31.
Step 9.3.1.1
Factor √31 out of √312.
√31√315√314
Step 9.3.1.2
Cancel the common factors.
Step 9.3.1.2.1
Factor √31 out of 5√31.
√31√31√31⋅54
Step 9.3.1.2.2
Cancel the common factor.
√31√31√31⋅54
Step 9.3.1.2.3
Rewrite the expression.
√3154
√3154
√3154
Step 9.3.2
Multiply the numerator by the reciprocal of the denominator.
√315⋅14
Step 9.3.3
Multiply √315⋅14.
Step 9.3.3.1
Multiply √315 by 14.
√315⋅4
Step 9.3.3.2
Multiply 5 by 4.
√3120
√3120
√3120
√3120
Step 10
The asymptotes follow the form y=±b(x-h)a+k because this hyperbola opens left and right.
y=±43⋅(x-(-2))+0
Step 11
Step 11.1
Remove parentheses.
y=43⋅(x-(-2))+0
Step 11.2
Simplify 43⋅(x-(-2))+0.
Step 11.2.1
Simplify the expression.
Step 11.2.1.1
Add 43⋅(x-(-2)) and 0.
y=43⋅(x-(-2))
Step 11.2.1.2
Multiply -1 by -2.
y=43⋅(x+2)
y=43⋅(x+2)
Step 11.2.2
Apply the distributive property.
y=43x+43⋅2
Step 11.2.3
Combine 43 and x.
y=4x3+43⋅2
Step 11.2.4
Multiply 43⋅2.
Step 11.2.4.1
Combine 43 and 2.
y=4x3+4⋅23
Step 11.2.4.2
Multiply 4 by 2.
y=4x3+83
y=4x3+83
y=4x3+83
y=4x3+83
Step 12
Step 12.1
Remove parentheses.
y=-43⋅(x-(-2))+0
Step 12.2
Simplify -43⋅(x-(-2))+0.
Step 12.2.1
Simplify the expression.
Step 12.2.1.1
Add -43⋅(x-(-2)) and 0.
y=-43⋅(x-(-2))
Step 12.2.1.2
Multiply -1 by -2.
y=-43⋅(x+2)
y=-43⋅(x+2)
Step 12.2.2
Apply the distributive property.
y=-43x-43⋅2
Step 12.2.3
Combine x and 43.
y=-x⋅43-43⋅2
Step 12.2.4
Multiply -43⋅2.
Step 12.2.4.1
Multiply 2 by -1.
y=-x⋅43-2(43)
Step 12.2.4.2
Combine -2 and 43.
y=-x⋅43+-2⋅43
Step 12.2.4.3
Multiply -2 by 4.
y=-x⋅43+-83
y=-x⋅43+-83
Step 12.2.5
Simplify each term.
Step 12.2.5.1
Move 4 to the left of x.
y=-4⋅x3+-83
Step 12.2.5.2
Move the negative in front of the fraction.
y=-4x3-83
y=-4x3-83
y=-4x3-83
y=-4x3-83
Step 13
This hyperbola has two asymptotes.
y=4x3+83,y=-4x3-83
Step 14
These values represent the important values for graphing and analyzing a hyperbola.
Center: (-2,0)
Vertices: (-2+3√314,0),(-2-3√314,0)
Foci: (-2+5√314,0),(-2-5√314,0)
Eccentricity: 53
Focal Parameter: √3120
Asymptotes: y=4x3+83, y=-4x3-83
Step 15