Pre-Algebra Examples

Graph 16x^2-9y^2+64x-54-161=0
16x2-9y2+64x-54-161=0
Step 1
Find the standard form of the hyperbola.
Tap for more steps...
Step 1.1
Move all terms not containing a variable to the right side of the equation.
Tap for more steps...
Step 1.1.1
Add 54 to both sides of the equation.
16x2-9y2+64x-161=54
Step 1.1.2
Add 161 to both sides of the equation.
16x2-9y2+64x=54+161
Step 1.1.3
Add 54 and 161.
16x2-9y2+64x=215
16x2-9y2+64x=215
Step 1.2
Complete the square for 16x2+64x.
Tap for more steps...
Step 1.2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=16
b=64
c=0
Step 1.2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.2.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.2.3.1
Substitute the values of a and b into the formula d=b2a.
d=64216
Step 1.2.3.2
Simplify the right side.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of 64 and 2.
Tap for more steps...
Step 1.2.3.2.1.1
Factor 2 out of 64.
d=232216
Step 1.2.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.2.1.2.1
Factor 2 out of 216.
d=2322(16)
Step 1.2.3.2.1.2.2
Cancel the common factor.
d=232216
Step 1.2.3.2.1.2.3
Rewrite the expression.
d=3216
d=3216
d=3216
Step 1.2.3.2.2
Cancel the common factor of 32 and 16.
Tap for more steps...
Step 1.2.3.2.2.1
Factor 16 out of 32.
d=16216
Step 1.2.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.2.2.2.1
Factor 16 out of 16.
d=16216(1)
Step 1.2.3.2.2.2.2
Cancel the common factor.
d=162161
Step 1.2.3.2.2.2.3
Rewrite the expression.
d=21
Step 1.2.3.2.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
d=2
Step 1.2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-642416
Step 1.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.2.4.2.1
Simplify each term.
Tap for more steps...
Step 1.2.4.2.1.1
Raise 64 to the power of 2.
e=0-4096416
Step 1.2.4.2.1.2
Multiply 4 by 16.
e=0-409664
Step 1.2.4.2.1.3
Divide 4096 by 64.
e=0-164
Step 1.2.4.2.1.4
Multiply -1 by 64.
e=0-64
e=0-64
Step 1.2.4.2.2
Subtract 64 from 0.
e=-64
e=-64
e=-64
Step 1.2.5
Substitute the values of a, d, and e into the vertex form 16(x+2)2-64.
16(x+2)2-64
16(x+2)2-64
Step 1.3
Substitute 16(x+2)2-64 for 16x2+64x in the equation 16x2-9y2+64x=215.
16(x+2)2-64-9y2=215
Step 1.4
Move -64 to the right side of the equation by adding 64 to both sides.
16(x+2)2-9y2=215+64
Step 1.5
Add 215 and 64.
16(x+2)2-9y2=279
Step 1.6
Divide each term by 279 to make the right side equal to one.
16(x+2)2279-9y2279=279279
Step 1.7
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x+2)227916-y231=1
(x+2)227916-y231=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.
(x-h)2a2-(y-k)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable h represents the x-offset from the origin, k represents the y-offset from origin, a.
a=3314
b=31
k=0
h=-2
Step 4
The center of a hyperbola follows the form of (h,k). Substitute in the values of h and k.
(-2,0)
Step 5
Find c, the distance from the center to a focus.
Tap for more steps...
Step 5.1
Find the distance from the center to a focus of the hyperbola by using the following formula.
a2+b2
Step 5.2
Substitute the values of a and b in the formula.
(3314)2+(31)2
Step 5.3
Simplify.
Tap for more steps...
Step 5.3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.3.1.1
Apply the product rule to 3314.
(331)242+(31)2
Step 5.3.1.2
Apply the product rule to 331.
3231242+(31)2
3231242+(31)2
Step 5.3.2
Simplify the numerator.
Tap for more steps...
Step 5.3.2.1
Raise 3 to the power of 2.
931242+(31)2
Step 5.3.2.2
Rewrite 312 as 31.
Tap for more steps...
Step 5.3.2.2.1
Use nax=axn to rewrite 31 as 3112.
9(3112)242+(31)2
Step 5.3.2.2.2
Apply the power rule and multiply exponents, (am)n=amn.
93112242+(31)2
Step 5.3.2.2.3
Combine 12 and 2.
9312242+(31)2
Step 5.3.2.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.2.4.1
Cancel the common factor.
9312242+(31)2
Step 5.3.2.2.4.2
Rewrite the expression.
931142+(31)2
931142+(31)2
Step 5.3.2.2.5
Evaluate the exponent.
93142+(31)2
93142+(31)2
93142+(31)2
Step 5.3.3
Simplify by cancelling exponent with radical.
Tap for more steps...
Step 5.3.3.1
Raise 4 to the power of 2.
93116+(31)2
Step 5.3.3.2
Multiply 9 by 31.
27916+(31)2
Step 5.3.3.3
Rewrite 312 as 31.
Tap for more steps...
Step 5.3.3.3.1
Use nax=axn to rewrite 31 as 3112.
27916+(3112)2
Step 5.3.3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
27916+31122
Step 5.3.3.3.3
Combine 12 and 2.
27916+3122
Step 5.3.3.3.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.3.3.4.1
Cancel the common factor.
27916+3122
Step 5.3.3.3.4.2
Rewrite the expression.
27916+311
27916+311
Step 5.3.3.3.5
Evaluate the exponent.
27916+31
27916+31
27916+31
Step 5.3.4
To write 31 as a fraction with a common denominator, multiply by 1616.
27916+311616
Step 5.3.5
Combine 31 and 1616.
27916+311616
Step 5.3.6
Combine the numerators over the common denominator.
279+311616
Step 5.3.7
Simplify the numerator.
Tap for more steps...
Step 5.3.7.1
Multiply 31 by 16.
279+49616
Step 5.3.7.2
Add 279 and 496.
77516
77516
Step 5.3.8
Rewrite 77516 as 77516.
77516
Step 5.3.9
Simplify the numerator.
Tap for more steps...
Step 5.3.9.1
Rewrite 775 as 5231.
Tap for more steps...
Step 5.3.9.1.1
Factor 25 out of 775.
25(31)16
Step 5.3.9.1.2
Rewrite 25 as 52.
523116
523116
Step 5.3.9.2
Pull terms out from under the radical.
53116
53116
Step 5.3.10
Simplify the denominator.
Tap for more steps...
Step 5.3.10.1
Rewrite 16 as 42.
53142
Step 5.3.10.2
Pull terms out from under the radical, assuming positive real numbers.
5314
5314
5314
5314
Step 6
Find the vertices.
Tap for more steps...
Step 6.1
The first vertex of a hyperbola can be found by adding a to h.
(h+a,k)
Step 6.2
Substitute the known values of h, a, and k into the formula and simplify.
(-2+3314,0)
Step 6.3
The second vertex of a hyperbola can be found by subtracting a from h.
(h-a,k)
Step 6.4
Substitute the known values of h, a, and k into the formula and simplify.
(-2-3314,0)
Step 6.5
The vertices of a hyperbola follow the form of (h±a,k). Hyperbolas have two vertices.
(-2+3314,0),(-2-3314,0)
(-2+3314,0),(-2-3314,0)
Step 7
Find the foci.
Tap for more steps...
Step 7.1
The first focus of a hyperbola can be found by adding c to h.
(h+c,k)
Step 7.2
Substitute the known values of h, c, and k into the formula and simplify.
(-2+5314,0)
Step 7.3
The second focus of a hyperbola can be found by subtracting c from h.
(h-c,k)
Step 7.4
Substitute the known values of h, c, and k into the formula and simplify.
(-2-5314,0)
Step 7.5
The foci of a hyperbola follow the form of (h±a2+b2,k). Hyperbolas have two foci.
(-2+5314,0),(-2-5314,0)
(-2+5314,0),(-2-5314,0)
Step 8
Find the eccentricity.
Tap for more steps...
Step 8.1
Find the eccentricity by using the following formula.
a2+b2a
Step 8.2
Substitute the values of a and b into the formula.
(3314)2+(31)23314
Step 8.3
Simplify.
Tap for more steps...
Step 8.3.1
Multiply the numerator by the reciprocal of the denominator.
(3314)2+3124331
Step 8.3.2
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 8.3.2.1
Apply the product rule to 3314.
(331)242+3124331
Step 8.3.2.2
Apply the product rule to 331.
3231242+3124331
3231242+3124331
Step 8.3.3
Simplify the numerator.
Tap for more steps...
Step 8.3.3.1
Raise 3 to the power of 2.
931242+3124331
Step 8.3.3.2
Rewrite 312 as 31.
Tap for more steps...
Step 8.3.3.2.1
Use nax=axn to rewrite 31 as 3112.
9(3112)242+3124331
Step 8.3.3.2.2
Apply the power rule and multiply exponents, (am)n=amn.
93112242+3124331
Step 8.3.3.2.3
Combine 12 and 2.
9312242+3124331
Step 8.3.3.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.3.2.4.1
Cancel the common factor.
9312242+3124331
Step 8.3.3.2.4.2
Rewrite the expression.
931142+3124331
931142+3124331
Step 8.3.3.2.5
Evaluate the exponent.
93142+3124331
93142+3124331
93142+3124331
Step 8.3.4
Simplify by cancelling exponent with radical.
Tap for more steps...
Step 8.3.4.1
Raise 4 to the power of 2.
93116+3124331
Step 8.3.4.2
Multiply 9 by 31.
27916+3124331
Step 8.3.4.3
Rewrite 312 as 31.
Tap for more steps...
Step 8.3.4.3.1
Use nax=axn to rewrite 31 as 3112.
27916+(3112)24331
Step 8.3.4.3.2
Apply the power rule and multiply exponents, (am)n=amn.
27916+311224331
Step 8.3.4.3.3
Combine 12 and 2.
27916+31224331
Step 8.3.4.3.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.4.3.4.1
Cancel the common factor.
27916+31224331
Step 8.3.4.3.4.2
Rewrite the expression.
27916+3114331
27916+3114331
Step 8.3.4.3.5
Evaluate the exponent.
27916+314331
27916+314331
27916+314331
Step 8.3.5
To write 31 as a fraction with a common denominator, multiply by 1616.
27916+3116164331
Step 8.3.6
Combine 31 and 1616.
27916+3116164331
Step 8.3.7
Combine the numerators over the common denominator.
279+3116164331
Step 8.3.8
Simplify the numerator.
Tap for more steps...
Step 8.3.8.1
Multiply 31 by 16.
279+496164331
Step 8.3.8.2
Add 279 and 496.
775164331
775164331
Step 8.3.9
Rewrite 77516 as 77516.
775164331
Step 8.3.10
Simplify the numerator.
Tap for more steps...
Step 8.3.10.1
Rewrite 775 as 5231.
Tap for more steps...
Step 8.3.10.1.1
Factor 25 out of 775.
25(31)164331
Step 8.3.10.1.2
Rewrite 25 as 52.
5231164331
5231164331
Step 8.3.10.2
Pull terms out from under the radical.
531164331
531164331
Step 8.3.11
Simplify the denominator.
Tap for more steps...
Step 8.3.11.1
Rewrite 16 as 42.
531424331
Step 8.3.11.2
Pull terms out from under the radical, assuming positive real numbers.
53144331
53144331
Step 8.3.12
Simplify terms.
Tap for more steps...
Step 8.3.12.1
Cancel the common factor of 31.
Tap for more steps...
Step 8.3.12.1.1
Factor 31 out of 531.
31544331
Step 8.3.12.1.2
Factor 31 out of 331.
31544313
Step 8.3.12.1.3
Cancel the common factor.
31544313
Step 8.3.12.1.4
Rewrite the expression.
5443
5443
Step 8.3.12.2
Cancel the common factor of 4.
Tap for more steps...
Step 8.3.12.2.1
Cancel the common factor.
5443
Step 8.3.12.2.2
Rewrite the expression.
5(13)
5(13)
Step 8.3.12.3
Combine 5 and 13.
53
53
53
53
Step 9
Find the focal parameter.
Tap for more steps...
Step 9.1
Find the value of the focal parameter of the hyperbola by using the following formula.
b2a2+b2
Step 9.2
Substitute the values of b and a2+b2 in the formula.
3125314
Step 9.3
Simplify.
Tap for more steps...
Step 9.3.1
Cancel the common factor of 312 and 31.
Tap for more steps...
Step 9.3.1.1
Factor 31 out of 312.
31315314
Step 9.3.1.2
Cancel the common factors.
Tap for more steps...
Step 9.3.1.2.1
Factor 31 out of 531.
31313154
Step 9.3.1.2.2
Cancel the common factor.
31313154
Step 9.3.1.2.3
Rewrite the expression.
3154
3154
3154
Step 9.3.2
Multiply the numerator by the reciprocal of the denominator.
31514
Step 9.3.3
Multiply 31514.
Tap for more steps...
Step 9.3.3.1
Multiply 315 by 14.
3154
Step 9.3.3.2
Multiply 5 by 4.
3120
3120
3120
3120
Step 10
The asymptotes follow the form y=±b(x-h)a+k because this hyperbola opens left and right.
y=±43(x-(-2))+0
Step 11
Simplify to find the first asymptote.
Tap for more steps...
Step 11.1
Remove parentheses.
y=43(x-(-2))+0
Step 11.2
Simplify 43(x-(-2))+0.
Tap for more steps...
Step 11.2.1
Simplify the expression.
Tap for more steps...
Step 11.2.1.1
Add 43(x-(-2)) and 0.
y=43(x-(-2))
Step 11.2.1.2
Multiply -1 by -2.
y=43(x+2)
y=43(x+2)
Step 11.2.2
Apply the distributive property.
y=43x+432
Step 11.2.3
Combine 43 and x.
y=4x3+432
Step 11.2.4
Multiply 432.
Tap for more steps...
Step 11.2.4.1
Combine 43 and 2.
y=4x3+423
Step 11.2.4.2
Multiply 4 by 2.
y=4x3+83
y=4x3+83
y=4x3+83
y=4x3+83
Step 12
Simplify to find the second asymptote.
Tap for more steps...
Step 12.1
Remove parentheses.
y=-43(x-(-2))+0
Step 12.2
Simplify -43(x-(-2))+0.
Tap for more steps...
Step 12.2.1
Simplify the expression.
Tap for more steps...
Step 12.2.1.1
Add -43(x-(-2)) and 0.
y=-43(x-(-2))
Step 12.2.1.2
Multiply -1 by -2.
y=-43(x+2)
y=-43(x+2)
Step 12.2.2
Apply the distributive property.
y=-43x-432
Step 12.2.3
Combine x and 43.
y=-x43-432
Step 12.2.4
Multiply -432.
Tap for more steps...
Step 12.2.4.1
Multiply 2 by -1.
y=-x43-2(43)
Step 12.2.4.2
Combine -2 and 43.
y=-x43+-243
Step 12.2.4.3
Multiply -2 by 4.
y=-x43+-83
y=-x43+-83
Step 12.2.5
Simplify each term.
Tap for more steps...
Step 12.2.5.1
Move 4 to the left of x.
y=-4x3+-83
Step 12.2.5.2
Move the negative in front of the fraction.
y=-4x3-83
y=-4x3-83
y=-4x3-83
y=-4x3-83
Step 13
This hyperbola has two asymptotes.
y=4x3+83,y=-4x3-83
Step 14
These values represent the important values for graphing and analyzing a hyperbola.
Center: (-2,0)
Vertices: (-2+3314,0),(-2-3314,0)
Foci: (-2+5314,0),(-2-5314,0)
Eccentricity: 53
Focal Parameter: 3120
Asymptotes: y=4x3+83, y=-4x3-83
Step 15
 [x2  12  π  xdx ]