Enter a problem...
Pre-Algebra Examples
x2-25x2-162x+10x2-4x⋅2x+8x2-5xx2−25x2−162x+10x2−4x⋅2x+8x2−5x
Step 1
Find where the expression x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4) is undefined.
x=-4,x=4x=−4,x=4
Step 2
Since x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4)→→-∞−∞ as xx→→-4−4 from the left and x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4)→→∞∞ as xx→→-4−4 from the right, then x=-4x=−4 is a vertical asymptote.
x=-4x=−4
Step 3
Since x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4)→→∞∞ as xx→→44 from the left and x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4)→→-∞−∞ as xx→→44 from the right, then x=4x=4 is a vertical asymptote.
x=4x=4
Step 4
List all of the vertical asymptotes:
x=-4,4x=−4,4
Step 5
Consider the rational function R(x)=axnbxmR(x)=axnbxm where nn is the degree of the numerator and mm is the degree of the denominator.
1. If n<mn<m, then the x-axis, y=0y=0, is the horizontal asymptote.
2. If n=mn=m, then the horizontal asymptote is the line y=aby=ab.
3. If n>mn>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 6
Find nn and mm.
n=3n=3
m=2m=2
Step 7
Since n>mn>m, there is no horizontal asymptote.
No Horizontal Asymptotes
Step 8
Step 8.1
Simplify the denominator.
Step 8.1.1
Factor 22 out of 2x2-322x2−32.
Step 8.1.1.1
Factor 22 out of 2x22x2.
x3-5x2-8x-322(x2)-32x3−5x2−8x−322(x2)−32
Step 8.1.1.2
Factor 22 out of -32−32.
x3-5x2-8x-322x2+2⋅-16x3−5x2−8x−322x2+2⋅−16
Step 8.1.1.3
Factor 22 out of 2x2+2⋅-162x2+2⋅−16.
x3-5x2-8x-322(x2-16)x3−5x2−8x−322(x2−16)
x3-5x2-8x-322(x2-16)x3−5x2−8x−322(x2−16)
Step 8.1.2
Rewrite 1616 as 4242.
x3-5x2-8x-322(x2-42)x3−5x2−8x−322(x2−42)
Step 8.1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=4b=4.
x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4)
x3-5x2-8x-322(x+4)(x-4)x3−5x2−8x−322(x+4)(x−4)
Step 8.2
Expand 2(x+4)(x-4)2(x+4)(x−4).
Step 8.2.1
Apply the distributive property.
x3-5x2-8x-32(2x+2⋅4)(x-4)x3−5x2−8x−32(2x+2⋅4)(x−4)
Step 8.2.2
Apply the distributive property.
x3-5x2-8x-322x(x-4)+2⋅(4(x-4))x3−5x2−8x−322x(x−4)+2⋅(4(x−4))
Step 8.2.3
Apply the distributive property.
x3-5x2-8x-322x⋅x+2x⋅-4+2⋅(4(x-4))x3−5x2−8x−322x⋅x+2x⋅−4+2⋅(4(x−4))
Step 8.2.4
Apply the distributive property.
x3-5x2-8x-322x⋅x+2x⋅-4+2⋅(4x)+2⋅4⋅-4x3−5x2−8x−322x⋅x+2x⋅−4+2⋅(4x)+2⋅4⋅−4
Step 8.2.5
Move xx.
x3-5x2-8x-322x⋅x+2⋅(-4x)+2⋅(4x)+2⋅4⋅-4x3−5x2−8x−322x⋅x+2⋅(−4x)+2⋅(4x)+2⋅4⋅−4
Step 8.2.6
Raise x to the power of 1.
x3-5x2-8x-322(x⋅x)+2⋅(-4x)+2⋅(4x)+2⋅4⋅-4
Step 8.2.7
Raise x to the power of 1.
x3-5x2-8x-322(x⋅x)+2⋅(-4x)+2⋅(4x)+2⋅4⋅-4
Step 8.2.8
Use the power rule aman=am+n to combine exponents.
x3-5x2-8x-322x1+1+2⋅(-4x)+2⋅(4x)+2⋅4⋅-4
Step 8.2.9
Add 1 and 1.
x3-5x2-8x-322x2+2⋅(-4x)+2⋅(4x)+2⋅4⋅-4
Step 8.2.10
Multiply 2 by -4.
x3-5x2-8x-322x2-8x+2⋅(4x)+2⋅4⋅-4
Step 8.2.11
Multiply 2 by 4.
x3-5x2-8x-322x2-8x+8x+2⋅4⋅-4
Step 8.2.12
Multiply 2 by 4.
x3-5x2-8x-322x2-8x+8x+8⋅-4
Step 8.2.13
Multiply 8 by -4.
x3-5x2-8x-322x2-8x+8x-32
Step 8.2.14
Add -8x and 8x.
x3-5x2-8x-322x2+0-32
Step 8.2.15
Subtract 32 from 0.
x3-5x2-8x-322x2-32
x3-5x2-8x-322x2-32
Step 8.3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 |
Step 8.4
Divide the highest order term in the dividend x3 by the highest order term in divisor 2x2.
x2 | |||||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 |
Step 8.5
Multiply the new quotient term by the divisor.
x2 | |||||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
+ | x3 | + | 0 | - | 16x |
Step 8.6
The expression needs to be subtracted from the dividend, so change all the signs in x3+0-16x
x2 | |||||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x |
Step 8.7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
x2 | |||||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x | ||||||||
- | 5x2 | + | 8x |
Step 8.8
Pull the next terms from the original dividend down into the current dividend.
x2 | |||||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x | ||||||||
- | 5x2 | + | 8x | - | 32 |
Step 8.9
Divide the highest order term in the dividend -5x2 by the highest order term in divisor 2x2.
x2 | - | 52 | |||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x | ||||||||
- | 5x2 | + | 8x | - | 32 |
Step 8.10
Multiply the new quotient term by the divisor.
x2 | - | 52 | |||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x | ||||||||
- | 5x2 | + | 8x | - | 32 | ||||||||
- | 5x2 | + | 0 | + | 80 |
Step 8.11
The expression needs to be subtracted from the dividend, so change all the signs in -5x2+0+80
x2 | - | 52 | |||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x | ||||||||
- | 5x2 | + | 8x | - | 32 | ||||||||
+ | 5x2 | - | 0 | - | 80 |
Step 8.12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
x2 | - | 52 | |||||||||||
2x2 | + | 0x | - | 32 | x3 | - | 5x2 | - | 8x | - | 32 | ||
- | x3 | - | 0 | + | 16x | ||||||||
- | 5x2 | + | 8x | - | 32 | ||||||||
+ | 5x2 | - | 0 | - | 80 | ||||||||
+ | 8x | - | 112 |
Step 8.13
The final answer is the quotient plus the remainder over the divisor.
x2-52+8x-1122x2-32
Step 8.14
The oblique asymptote is the polynomial portion of the long division result.
y=x2-52
y=x2-52
Step 9
This is the set of all asymptotes.
Vertical Asymptotes: x=-4,4
No Horizontal Asymptotes
Oblique Asymptotes: y=x2-52
Step 10