Pre-Algebra Examples

Graph y=-13sin(pi/12x-1)+50
y=-13sin(π12x-1)+50y=13sin(π12x1)+50
Step 1
Use the form asin(bx-c)+dasin(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-13a=13
b=π12b=π12
c=1c=1
d=50d=50
Step 2
Find the amplitude |a||a|.
Amplitude: 1313
Step 3
Find the period using the formula 2π|b|2π|b|.
Tap for more steps...
Step 3.1
Find the period of -13sin(πx12-1)13sin(πx121).
Tap for more steps...
Step 3.1.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.1.2
Replace bb with π12π12 in the formula for period.
2π|π12|2ππ12
Step 3.1.3
π12π12 is approximately 0.261799380.26179938 which is positive so remove the absolute value
2ππ122ππ12
Step 3.1.4
Multiply the numerator by the reciprocal of the denominator.
2π12π2π12π
Step 3.1.5
Cancel the common factor of ππ.
Tap for more steps...
Step 3.1.5.1
Factor ππ out of 2π2π.
π212ππ212π
Step 3.1.5.2
Cancel the common factor.
π212π
Step 3.1.5.3
Rewrite the expression.
212
212
Step 3.1.6
Multiply 2 by 12.
24
24
Step 3.2
Find the period of 50.
Tap for more steps...
Step 3.2.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2.2
Replace b with π12 in the formula for period.
2π|π12|
Step 3.2.3
π12 is approximately 0.26179938 which is positive so remove the absolute value
2ππ12
Step 3.2.4
Multiply the numerator by the reciprocal of the denominator.
2π12π
Step 3.2.5
Cancel the common factor of π.
Tap for more steps...
Step 3.2.5.1
Factor π out of 2π.
π212π
Step 3.2.5.2
Cancel the common factor.
π212π
Step 3.2.5.3
Rewrite the expression.
212
212
Step 3.2.6
Multiply 2 by 12.
24
24
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
24
24
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 1π12
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 1(12π)
Step 4.4
Multiply 12π by 1.
Phase Shift: 12π
Phase Shift: 12π
Step 5
List the properties of the trigonometric function.
Amplitude: 13
Period: 24
Phase Shift: 12π (12π to the right)
Vertical Shift: 50
Step 6
Select a few points to graph.
Tap for more steps...
Step 6.1
Find the point at x=6+12π.
Tap for more steps...
Step 6.1.1
Replace the variable x with 6+12π in the expression.
f(6+12π)=-13sin(π(6+12π)12-1)+50
Step 6.1.2
Simplify the result.
Tap for more steps...
Step 6.1.2.1
Simplify each term.
Tap for more steps...
Step 6.1.2.1.1
Simplify each term.
Tap for more steps...
Step 6.1.2.1.1.1
Cancel the common factor of 6+12π and 12.
Tap for more steps...
Step 6.1.2.1.1.1.1
Factor 6 out of π(6+12π).
f(6+12π)=-13sin(6(π(1+2π))12-1)+50
Step 6.1.2.1.1.1.2
Cancel the common factors.
Tap for more steps...
Step 6.1.2.1.1.1.2.1
Factor 6 out of 12.
f(6+12π)=-13sin(6(π(1+2π))6(2)-1)+50
Step 6.1.2.1.1.1.2.2
Cancel the common factor.
f(6+12π)=-13sin(6(π(1+2π))62-1)+50
Step 6.1.2.1.1.1.2.3
Rewrite the expression.
f(6+12π)=-13sin(π(1+2π)2-1)+50
f(6+12π)=-13sin(π(1+2π)2-1)+50
f(6+12π)=-13sin(π(1+2π)2-1)+50
Step 6.1.2.1.1.2
Simplify the numerator.
Tap for more steps...
Step 6.1.2.1.1.2.1
Write 1 as a fraction with a common denominator.
f(6+12π)=-13sin(π(ππ+2π)2-1)+50
Step 6.1.2.1.1.2.2
Combine the numerators over the common denominator.
f(6+12π)=-13sin(π(π+2π)2-1)+50
f(6+12π)=-13sin(π(π+2π)2-1)+50
Step 6.1.2.1.1.3
Combine π and π+2π.
f(6+12π)=-13sin(π(π+2)π2-1)+50
Step 6.1.2.1.1.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 6.1.2.1.1.4.1
Reduce the expression π(π+2)π by cancelling the common factors.
Tap for more steps...
Step 6.1.2.1.1.4.1.1
Cancel the common factor.
f(6+12π)=-13sin(π(π+2)π2-1)+50
Step 6.1.2.1.1.4.1.2
Rewrite the expression.
f(6+12π)=-13sin(π+212-1)+50
f(6+12π)=-13sin(π+212-1)+50
Step 6.1.2.1.1.4.2
Divide π+2 by 1.
f(6+12π)=-13sin(π+22-1)+50
f(6+12π)=-13sin(π+22-1)+50
f(6+12π)=-13sin(π+22-1)+50
Step 6.1.2.1.2
To write -1 as a fraction with a common denominator, multiply by 22.
f(6+12π)=-13sin(π+22-122)+50
Step 6.1.2.1.3
Combine -1 and 22.
f(6+12π)=-13sin(π+22+-122)+50
Step 6.1.2.1.4
Combine the numerators over the common denominator.
f(6+12π)=-13sin(π+2-122)+50
Step 6.1.2.1.5
Simplify the numerator.
Tap for more steps...
Step 6.1.2.1.5.1
Multiply -1 by 2.
f(6+12π)=-13sin(π+2-22)+50
Step 6.1.2.1.5.2
Subtract 2 from 2.
f(6+12π)=-13sin(π+02)+50
Step 6.1.2.1.5.3
Add π and 0.
f(6+12π)=-13sin(π2)+50
f(6+12π)=-13sin(π2)+50
Step 6.1.2.1.6
The exact value of sin(π2) is 1.
f(6+12π)=-131+50
Step 6.1.2.1.7
Multiply -13 by 1.
f(6+12π)=-13+50
f(6+12π)=-13+50
Step 6.1.2.2
Add -13 and 50.
f(6+12π)=37
Step 6.1.2.3
The final answer is 37.
37
37
37
Step 6.2
List the points in a table.
xf(x)6+12π3730+12π3754+12π3778+12π37102+12π37
xf(x)6+12π3730+12π3754+12π3778+12π37102+12π37
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 13
Period: 24
Phase Shift: 12π (12π to the right)
Vertical Shift: 50
xf(x)6+12π3730+12π3754+12π3778+12π37102+12π37
Step 8
 [x2  12  π  xdx ]