Enter a problem...
Pre-Algebra Examples
y=-13sin(π12x-1)+50y=−13sin(π12x−1)+50
Step 1
Use the form asin(bx-c)+dasin(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-13a=−13
b=π12b=π12
c=1c=1
d=50d=50
Step 2
Find the amplitude |a||a|.
Amplitude: 1313
Step 3
Step 3.1
Find the period of -13sin(πx12-1)−13sin(πx12−1).
Step 3.1.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.1.2
Replace bb with π12π12 in the formula for period.
2π|π12|2π∣∣π12∣∣
Step 3.1.3
π12π12 is approximately 0.261799380.26179938 which is positive so remove the absolute value
2ππ122ππ12
Step 3.1.4
Multiply the numerator by the reciprocal of the denominator.
2π12π2π12π
Step 3.1.5
Cancel the common factor of ππ.
Step 3.1.5.1
Factor ππ out of 2π2π.
π⋅212ππ⋅212π
Step 3.1.5.2
Cancel the common factor.
π⋅212π
Step 3.1.5.3
Rewrite the expression.
2⋅12
2⋅12
Step 3.1.6
Multiply 2 by 12.
24
24
Step 3.2
Find the period of 50.
Step 3.2.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2.2
Replace b with π12 in the formula for period.
2π|π12|
Step 3.2.3
π12 is approximately 0.26179938 which is positive so remove the absolute value
2ππ12
Step 3.2.4
Multiply the numerator by the reciprocal of the denominator.
2π12π
Step 3.2.5
Cancel the common factor of π.
Step 3.2.5.1
Factor π out of 2π.
π⋅212π
Step 3.2.5.2
Cancel the common factor.
π⋅212π
Step 3.2.5.3
Rewrite the expression.
2⋅12
2⋅12
Step 3.2.6
Multiply 2 by 12.
24
24
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
24
24
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 1π12
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 1(12π)
Step 4.4
Multiply 12π by 1.
Phase Shift: 12π
Phase Shift: 12π
Step 5
List the properties of the trigonometric function.
Amplitude: 13
Period: 24
Phase Shift: 12π (12π to the right)
Vertical Shift: 50
Step 6
Step 6.1
Find the point at x=6+12π.
Step 6.1.1
Replace the variable x with 6+12π in the expression.
f(6+12π)=-13sin(π(6+12π)12-1)+50
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Simplify each term.
Step 6.1.2.1.1
Simplify each term.
Step 6.1.2.1.1.1
Cancel the common factor of 6+12π and 12.
Step 6.1.2.1.1.1.1
Factor 6 out of π(6+12π).
f(6+12π)=-13sin(6(π(1+2π))12-1)+50
Step 6.1.2.1.1.1.2
Cancel the common factors.
Step 6.1.2.1.1.1.2.1
Factor 6 out of 12.
f(6+12π)=-13sin(6(π(1+2π))6(2)-1)+50
Step 6.1.2.1.1.1.2.2
Cancel the common factor.
f(6+12π)=-13sin(6(π(1+2π))6⋅2-1)+50
Step 6.1.2.1.1.1.2.3
Rewrite the expression.
f(6+12π)=-13sin(π(1+2π)2-1)+50
f(6+12π)=-13sin(π(1+2π)2-1)+50
f(6+12π)=-13sin(π(1+2π)2-1)+50
Step 6.1.2.1.1.2
Simplify the numerator.
Step 6.1.2.1.1.2.1
Write 1 as a fraction with a common denominator.
f(6+12π)=-13sin(π(ππ+2π)2-1)+50
Step 6.1.2.1.1.2.2
Combine the numerators over the common denominator.
f(6+12π)=-13sin(π(π+2π)2-1)+50
f(6+12π)=-13sin(π(π+2π)2-1)+50
Step 6.1.2.1.1.3
Combine π and π+2π.
f(6+12π)=-13sin(π(π+2)π2-1)+50
Step 6.1.2.1.1.4
Reduce the expression by cancelling the common factors.
Step 6.1.2.1.1.4.1
Reduce the expression π(π+2)π by cancelling the common factors.
Step 6.1.2.1.1.4.1.1
Cancel the common factor.
f(6+12π)=-13sin(π(π+2)π2-1)+50
Step 6.1.2.1.1.4.1.2
Rewrite the expression.
f(6+12π)=-13sin(π+212-1)+50
f(6+12π)=-13sin(π+212-1)+50
Step 6.1.2.1.1.4.2
Divide π+2 by 1.
f(6+12π)=-13sin(π+22-1)+50
f(6+12π)=-13sin(π+22-1)+50
f(6+12π)=-13sin(π+22-1)+50
Step 6.1.2.1.2
To write -1 as a fraction with a common denominator, multiply by 22.
f(6+12π)=-13sin(π+22-1⋅22)+50
Step 6.1.2.1.3
Combine -1 and 22.
f(6+12π)=-13sin(π+22+-1⋅22)+50
Step 6.1.2.1.4
Combine the numerators over the common denominator.
f(6+12π)=-13sin(π+2-1⋅22)+50
Step 6.1.2.1.5
Simplify the numerator.
Step 6.1.2.1.5.1
Multiply -1 by 2.
f(6+12π)=-13sin(π+2-22)+50
Step 6.1.2.1.5.2
Subtract 2 from 2.
f(6+12π)=-13sin(π+02)+50
Step 6.1.2.1.5.3
Add π and 0.
f(6+12π)=-13sin(π2)+50
f(6+12π)=-13sin(π2)+50
Step 6.1.2.1.6
The exact value of sin(π2) is 1.
f(6+12π)=-13⋅1+50
Step 6.1.2.1.7
Multiply -13 by 1.
f(6+12π)=-13+50
f(6+12π)=-13+50
Step 6.1.2.2
Add -13 and 50.
f(6+12π)=37
Step 6.1.2.3
The final answer is 37.
37
37
37
Step 6.2
List the points in a table.
xf(x)6+12π3730+12π3754+12π3778+12π37102+12π37
xf(x)6+12π3730+12π3754+12π3778+12π37102+12π37
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 13
Period: 24
Phase Shift: 12π (12π to the right)
Vertical Shift: 50
xf(x)6+12π3730+12π3754+12π3778+12π37102+12π37
Step 8