Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply by .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Multiply by .
Step 1.3.2
Subtract from .
Step 1.4
Apply the distributive property.
Step 1.5
Simplify.
Step 1.5.1
Combine and .
Step 1.5.2
Cancel the common factor of .
Step 1.5.2.1
Move the leading negative in into the numerator.
Step 1.5.2.2
Factor out of .
Step 1.5.2.3
Factor out of .
Step 1.5.2.4
Cancel the common factor.
Step 1.5.2.5
Rewrite the expression.
Step 1.5.3
Combine and .
Step 1.5.4
Multiply by .
Step 1.5.5
Combine and .
Step 1.5.6
Multiply .
Step 1.5.6.1
Multiply by .
Step 1.5.6.2
Combine and .
Step 1.5.6.3
Multiply by .
Step 1.6
Simplify each term.
Step 1.6.1
Move to the left of .
Step 1.6.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Rewrite the equation in vertex form.
Step 2.1.1
Complete the square for .
Step 2.1.1.1
Use the form , to find the values of , , and .
Step 2.1.1.2
Consider the vertex form of a parabola.
Step 2.1.1.3
Find the value of using the formula .
Step 2.1.1.3.1
Substitute the values of and into the formula .
Step 2.1.1.3.2
Simplify the right side.
Step 2.1.1.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 2.1.1.3.2.2
Cancel the common factor of and .
Step 2.1.1.3.2.2.1
Rewrite as .
Step 2.1.1.3.2.2.2
Move the negative in front of the fraction.
Step 2.1.1.3.2.3
Combine and .
Step 2.1.1.3.2.4
Multiply by .
Step 2.1.1.3.2.5
Cancel the common factor of and .
Step 2.1.1.3.2.5.1
Factor out of .
Step 2.1.1.3.2.5.2
Cancel the common factors.
Step 2.1.1.3.2.5.2.1
Factor out of .
Step 2.1.1.3.2.5.2.2
Cancel the common factor.
Step 2.1.1.3.2.5.2.3
Rewrite the expression.
Step 2.1.1.3.2.6
Multiply the numerator by the reciprocal of the denominator.
Step 2.1.1.3.2.7
Multiply by .
Step 2.1.1.3.2.8
Cancel the common factor of .
Step 2.1.1.3.2.8.1
Move the leading negative in into the numerator.
Step 2.1.1.3.2.8.2
Factor out of .
Step 2.1.1.3.2.8.3
Cancel the common factor.
Step 2.1.1.3.2.8.4
Rewrite the expression.
Step 2.1.1.3.2.9
Cancel the common factor of .
Step 2.1.1.3.2.9.1
Factor out of .
Step 2.1.1.3.2.9.2
Cancel the common factor.
Step 2.1.1.3.2.9.3
Rewrite the expression.
Step 2.1.1.3.2.10
Multiply by .
Step 2.1.1.4
Find the value of using the formula .
Step 2.1.1.4.1
Substitute the values of , and into the formula .
Step 2.1.1.4.2
Simplify the right side.
Step 2.1.1.4.2.1
Simplify each term.
Step 2.1.1.4.2.1.1
Simplify the numerator.
Step 2.1.1.4.2.1.1.1
Apply the product rule to .
Step 2.1.1.4.2.1.1.2
Raise to the power of .
Step 2.1.1.4.2.1.1.3
Raise to the power of .
Step 2.1.1.4.2.1.2
Simplify the denominator.
Step 2.1.1.4.2.1.2.1
Multiply by .
Step 2.1.1.4.2.1.2.2
Combine and .
Step 2.1.1.4.2.1.3
Multiply by .
Step 2.1.1.4.2.1.4
Reduce the expression by cancelling the common factors.
Step 2.1.1.4.2.1.4.1
Cancel the common factor of and .
Step 2.1.1.4.2.1.4.1.1
Factor out of .
Step 2.1.1.4.2.1.4.1.2
Cancel the common factors.
Step 2.1.1.4.2.1.4.1.2.1
Factor out of .
Step 2.1.1.4.2.1.4.1.2.2
Cancel the common factor.
Step 2.1.1.4.2.1.4.1.2.3
Rewrite the expression.
Step 2.1.1.4.2.1.4.2
Move the negative in front of the fraction.
Step 2.1.1.4.2.1.5
Multiply the numerator by the reciprocal of the denominator.
Step 2.1.1.4.2.1.6
Cancel the common factor of .
Step 2.1.1.4.2.1.6.1
Move the leading negative in into the numerator.
Step 2.1.1.4.2.1.6.2
Factor out of .
Step 2.1.1.4.2.1.6.3
Cancel the common factor.
Step 2.1.1.4.2.1.6.4
Rewrite the expression.
Step 2.1.1.4.2.1.7
Cancel the common factor of .
Step 2.1.1.4.2.1.7.1
Factor out of .
Step 2.1.1.4.2.1.7.2
Factor out of .
Step 2.1.1.4.2.1.7.3
Cancel the common factor.
Step 2.1.1.4.2.1.7.4
Rewrite the expression.
Step 2.1.1.4.2.1.8
Combine and .
Step 2.1.1.4.2.1.9
Multiply by .
Step 2.1.1.4.2.1.10
Move the negative in front of the fraction.
Step 2.1.1.4.2.1.11
Multiply .
Step 2.1.1.4.2.1.11.1
Multiply by .
Step 2.1.1.4.2.1.11.2
Multiply by .
Step 2.1.1.4.2.2
Combine the numerators over the common denominator.
Step 2.1.1.4.2.3
Add and .
Step 2.1.1.4.2.4
Divide by .
Step 2.1.1.5
Substitute the values of , , and into the vertex form .
Step 2.1.2
Set equal to the new right side.
Step 2.2
Use the vertex form, , to determine the values of , , and .
Step 2.3
Since the value of is negative, the parabola opens down.
Opens Down
Step 2.4
Find the vertex .
Step 2.5
Find , the distance from the vertex to the focus.
Step 2.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 2.5.2
Substitute the value of into the formula.
Step 2.5.3
Simplify.
Step 2.5.3.1
Cancel the common factor of and .
Step 2.5.3.1.1
Rewrite as .
Step 2.5.3.1.2
Move the negative in front of the fraction.
Step 2.5.3.2
Combine and .
Step 2.5.3.3
Multiply by .
Step 2.5.3.4
Cancel the common factor of and .
Step 2.5.3.4.1
Factor out of .
Step 2.5.3.4.2
Cancel the common factors.
Step 2.5.3.4.2.1
Factor out of .
Step 2.5.3.4.2.2
Cancel the common factor.
Step 2.5.3.4.2.3
Rewrite the expression.
Step 2.5.3.5
Multiply the numerator by the reciprocal of the denominator.
Step 2.5.3.6
Multiply by .
Step 2.6
Find the focus.
Step 2.6.1
The focus of a parabola can be found by adding to the y-coordinate if the parabola opens up or down.
Step 2.6.2
Substitute the known values of , , and into the formula and simplify.
Step 2.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 2.8
Find the directrix.
Step 2.8.1
The directrix of a parabola is the horizontal line found by subtracting from the y-coordinate of the vertex if the parabola opens up or down.
Step 2.8.2
Substitute the known values of and into the formula and simplify.
Step 2.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Down
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Direction: Opens Down
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 3
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Step 3.2.1
Combine the numerators over the common denominator.
Step 3.2.2
Simplify each term.
Step 3.2.2.1
Raise to the power of .
Step 3.2.2.2
Multiply by .
Step 3.2.3
Simplify the expression.
Step 3.2.3.1
Subtract from .
Step 3.2.3.2
Multiply by .
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Move the negative in front of the fraction.
Step 3.2.4.2
Divide by .
Step 3.2.5
To write as a fraction with a common denominator, multiply by .
Step 3.2.6
Combine and .
Step 3.2.7
Combine the numerators over the common denominator.
Step 3.2.8
Simplify the numerator.
Step 3.2.8.1
Multiply by .
Step 3.2.8.2
Add and .
Step 3.2.9
Move the negative in front of the fraction.
Step 3.2.10
The final answer is .
Step 3.3
The value at is .
Step 3.4
Replace the variable with in the expression.
Step 3.5
Simplify the result.
Step 3.5.1
Combine the numerators over the common denominator.
Step 3.5.2
Simplify each term.
Step 3.5.2.1
Raise to the power of .
Step 3.5.2.2
Multiply by .
Step 3.5.3
Simplify the expression.
Step 3.5.3.1
Subtract from .
Step 3.5.3.2
Multiply by .
Step 3.5.4
Simplify each term.
Step 3.5.4.1
Cancel the common factor of and .
Step 3.5.4.1.1
Factor out of .
Step 3.5.4.1.2
Cancel the common factors.
Step 3.5.4.1.2.1
Factor out of .
Step 3.5.4.1.2.2
Cancel the common factor.
Step 3.5.4.1.2.3
Rewrite the expression.
Step 3.5.4.2
Move the negative in front of the fraction.
Step 3.5.5
Simplify terms.
Step 3.5.5.1
Combine the numerators over the common denominator.
Step 3.5.5.2
Add and .
Step 3.5.5.3
Cancel the common factor of and .
Step 3.5.5.3.1
Factor out of .
Step 3.5.5.3.2
Cancel the common factors.
Step 3.5.5.3.2.1
Factor out of .
Step 3.5.5.3.2.2
Cancel the common factor.
Step 3.5.5.3.2.3
Rewrite the expression.
Step 3.5.5.4
Move the negative in front of the fraction.
Step 3.5.6
The final answer is .
Step 3.6
The value at is .
Step 3.7
Replace the variable with in the expression.
Step 3.8
Simplify the result.
Step 3.8.1
Combine the numerators over the common denominator.
Step 3.8.2
Simplify each term.
Step 3.8.2.1
Raise to the power of .
Step 3.8.2.2
Multiply by .
Step 3.8.3
Simplify the expression.
Step 3.8.3.1
Subtract from .
Step 3.8.3.2
Multiply by .
Step 3.8.4
Simplify each term.
Step 3.8.4.1
Move the negative in front of the fraction.
Step 3.8.4.2
Cancel the common factor of and .
Step 3.8.4.2.1
Factor out of .
Step 3.8.4.2.2
Cancel the common factors.
Step 3.8.4.2.2.1
Factor out of .
Step 3.8.4.2.2.2
Cancel the common factor.
Step 3.8.4.2.2.3
Rewrite the expression.
Step 3.8.5
To write as a fraction with a common denominator, multiply by .
Step 3.8.6
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.8.6.1
Multiply by .
Step 3.8.6.2
Multiply by .
Step 3.8.7
Combine the numerators over the common denominator.
Step 3.8.8
Simplify the numerator.
Step 3.8.8.1
Multiply by .
Step 3.8.8.2
Add and .
Step 3.8.9
Move the negative in front of the fraction.
Step 3.8.10
The final answer is .
Step 3.9
The value at is .
Step 3.10
Replace the variable with in the expression.
Step 3.11
Simplify the result.
Step 3.11.1
Combine the numerators over the common denominator.
Step 3.11.2
Simplify each term.
Step 3.11.2.1
Raise to the power of .
Step 3.11.2.2
Multiply by .
Step 3.11.3
Simplify the expression.
Step 3.11.3.1
Subtract from .
Step 3.11.3.2
Multiply by .
Step 3.11.4
Simplify each term.
Step 3.11.4.1
Cancel the common factor of and .
Step 3.11.4.1.1
Factor out of .
Step 3.11.4.1.2
Cancel the common factors.
Step 3.11.4.1.2.1
Factor out of .
Step 3.11.4.1.2.2
Cancel the common factor.
Step 3.11.4.1.2.3
Rewrite the expression.
Step 3.11.4.2
Move the negative in front of the fraction.
Step 3.11.5
Simplify terms.
Step 3.11.5.1
Combine the numerators over the common denominator.
Step 3.11.5.2
Add and .
Step 3.11.5.3
Cancel the common factor of and .
Step 3.11.5.3.1
Factor out of .
Step 3.11.5.3.2
Cancel the common factors.
Step 3.11.5.3.2.1
Factor out of .
Step 3.11.5.3.2.2
Cancel the common factor.
Step 3.11.5.3.2.3
Rewrite the expression.
Step 3.11.5.4
Move the negative in front of the fraction.
Step 3.11.6
The final answer is .
Step 3.12
The value at is .
Step 3.13
Graph the parabola using its properties and the selected points.
Step 4
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 5