Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Factor by grouping.
Step 1.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 1.1.1.1
Factor out of .
Step 1.1.1.2
Rewrite as plus
Step 1.1.1.3
Apply the distributive property.
Step 1.1.2
Factor out the greatest common factor from each group.
Step 1.1.2.1
Group the first two terms and the last two terms.
Step 1.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 1.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.5
The factor for is itself.
occurs time.
Step 2.6
The factor for is itself.
occurs time.
Step 2.7
The factor for is itself.
occurs time.
Step 2.8
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of .
Step 3.2.1.1.1
Cancel the common factor.
Step 3.2.1.1.2
Rewrite the expression.
Step 3.2.1.2
Cancel the common factor of .
Step 3.2.1.2.1
Factor out of .
Step 3.2.1.2.2
Cancel the common factor.
Step 3.2.1.2.3
Rewrite the expression.
Step 3.2.1.3
Apply the distributive property.
Step 3.2.1.4
Multiply by .
Step 3.2.1.5
Multiply by .
Step 3.2.2
Subtract from .
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Move the leading negative in into the numerator.
Step 3.3.1.2
Cancel the common factor.
Step 3.3.1.3
Rewrite the expression.
Step 3.3.2
Apply the distributive property.
Step 3.3.3
Multiply by .
Step 4
Step 4.1
Move all terms containing to the left side of the equation.
Step 4.1.1
Add to both sides of the equation.
Step 4.1.2
Add and .
Step 4.2
Add to both sides of the equation.
Step 4.3
Add and .
Step 4.4
Factor using the AC method.
Step 4.4.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 4.4.2
Write the factored form using these integers.
Step 4.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.6
Set equal to and solve for .
Step 4.6.1
Set equal to .
Step 4.6.2
Subtract from both sides of the equation.
Step 4.7
Set equal to and solve for .
Step 4.7.1
Set equal to .
Step 4.7.2
Subtract from both sides of the equation.
Step 4.8
The final solution is all the values that make true.
Step 5
Exclude the solutions that do not make true.