Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify .
Step 1.3.2.2.1
Simplify the left side.
Step 1.3.2.2.1.1
Remove parentheses.
Step 1.3.2.2.2
Simplify the right side.
Step 1.3.2.2.2.1
Simplify .
Step 1.3.2.2.2.1.1
Move to the left of .
Step 1.3.2.2.2.1.2
Subtract from .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify .
Step 1.3.2.4.1
Simplify the left side.
Step 1.3.2.4.1.1
Remove parentheses.
Step 1.3.2.4.2
Simplify the right side.
Step 1.3.2.4.2.1
Simplify .
Step 1.3.2.4.2.1.1
Move to the left of .
Step 1.3.2.4.2.1.2
Subtract from .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Subtract from both sides of the equation.
Step 1.3.3.2.2
Subtract from .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify .
Step 1.3.4.2.1.1
Multiply by .
Step 1.3.4.2.1.2
Add and .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify .
Step 1.3.4.4.1.1
Multiply by .
Step 1.3.4.4.1.2
Subtract from .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Simplify each term.
Step 2.3.1.2.1
Raise to the power of .
Step 2.3.1.2.2
Move to the left of .
Step 2.3.1.2.3
Move to the left of .
Step 2.3.1.3
Move all terms not containing to the right side of the equation.
Step 2.3.1.3.1
Subtract from both sides of the equation.
Step 2.3.1.3.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify .
Step 2.3.2.2.1
Simplify the left side.
Step 2.3.2.2.1.1
Remove parentheses.
Step 2.3.2.2.2
Simplify the right side.
Step 2.3.2.2.2.1
Simplify .
Step 2.3.2.2.2.1.1
Simplify each term.
Step 2.3.2.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.2.1.1.2
Move to the left of .
Step 2.3.2.2.2.1.1.3
Move to the left of .
Step 2.3.2.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.2.1.2.1
Subtract from .
Step 2.3.2.2.2.1.2.2
Subtract from .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify .
Step 2.3.2.4.1
Simplify the left side.
Step 2.3.2.4.1.1
Remove parentheses.
Step 2.3.2.4.2
Simplify the right side.
Step 2.3.2.4.2.1
Simplify .
Step 2.3.2.4.2.1.1
Simplify each term.
Step 2.3.2.4.2.1.1.1
Raise to the power of .
Step 2.3.2.4.2.1.1.2
Move to the left of .
Step 2.3.2.4.2.1.1.3
Move to the left of .
Step 2.3.2.4.2.1.2
Simplify by adding terms.
Step 2.3.2.4.2.1.2.1
Subtract from .
Step 2.3.2.4.2.1.2.2
Subtract from .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Subtract from both sides of the equation.
Step 2.3.3.2.3
Subtract from .
Step 2.3.3.3
Divide each term in by and simplify.
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of .
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Simplify each term.
Step 2.3.3.3.3.1.1
Cancel the common factor of and .
Step 2.3.3.3.3.1.1.1
Factor out of .
Step 2.3.3.3.3.1.1.2
Cancel the common factors.
Step 2.3.3.3.3.1.1.2.1
Factor out of .
Step 2.3.3.3.3.1.1.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.1.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.2
Move the negative in front of the fraction.
Step 2.3.3.3.3.1.3
Divide by .
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Cancel the common factor of .
Step 2.3.4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.2.1.1.2.2
Factor out of .
Step 2.3.4.2.1.1.2.3
Factor out of .
Step 2.3.4.2.1.1.2.4
Cancel the common factor.
Step 2.3.4.2.1.1.2.5
Rewrite the expression.
Step 2.3.4.2.1.1.3
Combine and .
Step 2.3.4.2.1.1.4
Multiply by .
Step 2.3.4.2.1.1.5
Multiply by .
Step 2.3.4.2.1.1.6
Move the negative in front of the fraction.
Step 2.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.3
Combine and .
Step 2.3.4.2.1.4
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Find the common denominator.
Step 2.3.4.2.1.5.1
Write as a fraction with denominator .
Step 2.3.4.2.1.5.2
Multiply by .
Step 2.3.4.2.1.5.3
Multiply by .
Step 2.3.4.2.1.5.4
Write as a fraction with denominator .
Step 2.3.4.2.1.5.5
Multiply by .
Step 2.3.4.2.1.5.6
Multiply by .
Step 2.3.4.2.1.6
Combine the numerators over the common denominator.
Step 2.3.4.2.1.7
Simplify each term.
Step 2.3.4.2.1.7.1
Multiply by .
Step 2.3.4.2.1.7.2
Multiply by .
Step 2.3.4.2.1.7.3
Multiply by .
Step 2.3.4.2.1.8
Simplify by adding terms.
Step 2.3.4.2.1.8.1
Add and .
Step 2.3.4.2.1.8.2
Add and .
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Simplify each term.
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Cancel the common factor of .
Step 2.3.4.4.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.4.1.1.2.2
Factor out of .
Step 2.3.4.4.1.1.2.3
Factor out of .
Step 2.3.4.4.1.1.2.4
Cancel the common factor.
Step 2.3.4.4.1.1.2.5
Rewrite the expression.
Step 2.3.4.4.1.1.3
Combine and .
Step 2.3.4.4.1.1.4
Multiply by .
Step 2.3.4.4.1.1.5
Multiply by .
Step 2.3.4.4.1.2
Subtract from .
Step 2.3.4.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.4
Simplify terms.
Step 2.3.4.4.1.4.1
Combine and .
Step 2.3.4.4.1.4.2
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Simplify each term.
Step 2.3.4.4.1.5.1
Simplify the numerator.
Step 2.3.4.4.1.5.1.1
Factor out of .
Step 2.3.4.4.1.5.1.1.1
Factor out of .
Step 2.3.4.4.1.5.1.1.2
Factor out of .
Step 2.3.4.4.1.5.1.1.3
Factor out of .
Step 2.3.4.4.1.5.1.2
Multiply by .
Step 2.3.4.4.1.5.1.3
Subtract from .
Step 2.3.4.4.1.5.1.4
Multiply by .
Step 2.3.4.4.1.5.2
Move the negative in front of the fraction.
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Multiply both sides by .
Step 2.3.5.3
Simplify.
Step 2.3.5.3.1
Simplify the left side.
Step 2.3.5.3.1.1
Cancel the common factor of .
Step 2.3.5.3.1.1.1
Cancel the common factor.
Step 2.3.5.3.1.1.2
Rewrite the expression.
Step 2.3.5.3.2
Simplify the right side.
Step 2.3.5.3.2.1
Multiply by .
Step 2.3.5.4
Solve for .
Step 2.3.5.4.1
Move all terms not containing to the right side of the equation.
Step 2.3.5.4.1.1
Subtract from both sides of the equation.
Step 2.3.5.4.1.2
Subtract from .
Step 2.3.5.4.2
Divide each term in by and simplify.
Step 2.3.5.4.2.1
Divide each term in by .
Step 2.3.5.4.2.2
Simplify the left side.
Step 2.3.5.4.2.2.1
Cancel the common factor of .
Step 2.3.5.4.2.2.1.1
Cancel the common factor.
Step 2.3.5.4.2.2.1.2
Divide by .
Step 2.3.5.4.2.3
Simplify the right side.
Step 2.3.5.4.2.3.1
Divide by .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify .
Step 2.3.6.2.1.1
Simplify each term.
Step 2.3.6.2.1.1.1
Multiply by .
Step 2.3.6.2.1.1.2
Divide by .
Step 2.3.6.2.1.1.3
Multiply by .
Step 2.3.6.2.1.2
Add and .
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify .
Step 2.3.6.4.1.1
Simplify each term.
Step 2.3.6.4.1.1.1
Divide by .
Step 2.3.6.4.1.1.2
Multiply by .
Step 2.3.6.4.1.2
Add and .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Raise to the power of .
Step 2.4.1.1.2
Multiply by .
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Simplify by adding numbers.
Step 2.4.1.2.1
Add and .
Step 2.4.1.2.2
Add and .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check does not pass, since and . The function rule can't be quadratic.
Step 2.4.3
Since for the corresponding values, the function is not quadratic.
The function is not quadratic
The function is not quadratic
The function is not quadratic
Step 3
There are no values of , , or in the equations or that work for every pair of and .
The table does not have a function rule that is linear or quadratic.