Pre-Algebra Examples

Find the Function Rule table[[x,y],[-4,-19],[7,25],[12,33]]
Step 1
Check if the function rule is linear.
Tap for more steps...
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Tap for more steps...
Step 1.3.1
Solve for in .
Tap for more steps...
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Add to both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify .
Tap for more steps...
Step 1.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.2.1.1
Remove parentheses.
Step 1.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.2.2.1
Simplify .
Tap for more steps...
Step 1.3.2.2.2.1.1
Move to the left of .
Step 1.3.2.2.2.1.2
Add and .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify .
Tap for more steps...
Step 1.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.4.1.1
Remove parentheses.
Step 1.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.4.2.1
Simplify .
Tap for more steps...
Step 1.3.2.4.2.1.1
Move to the left of .
Step 1.3.2.4.2.1.2
Add and .
Step 1.3.3
Solve for in .
Tap for more steps...
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Add to both sides of the equation.
Step 1.3.3.2.2
Add and .
Step 1.3.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.3.1
Cancel the common factor of and .
Tap for more steps...
Step 1.3.3.3.3.1.1
Factor out of .
Step 1.3.3.3.3.1.2
Cancel the common factors.
Tap for more steps...
Step 1.3.3.3.3.1.2.1
Factor out of .
Step 1.3.3.3.3.1.2.2
Cancel the common factor.
Step 1.3.3.3.3.1.2.3
Rewrite the expression.
Step 1.3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.4.2.1
Simplify .
Tap for more steps...
Step 1.3.4.2.1.1
Multiply .
Tap for more steps...
Step 1.3.4.2.1.1.1
Combine and .
Step 1.3.4.2.1.1.2
Multiply by .
Step 1.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.2.1.3
Combine and .
Step 1.3.4.2.1.4
Combine the numerators over the common denominator.
Step 1.3.4.2.1.5
Simplify the numerator.
Tap for more steps...
Step 1.3.4.2.1.5.1
Multiply by .
Step 1.3.4.2.1.5.2
Subtract from .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Tap for more steps...
Step 1.3.4.4.1
Simplify .
Tap for more steps...
Step 1.3.4.4.1.1
Cancel the common factor of .
Tap for more steps...
Step 1.3.4.4.1.1.1
Cancel the common factor.
Step 1.3.4.4.1.1.2
Rewrite the expression.
Step 1.3.4.4.1.2
Add and .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Check if the function rule is quadratic.
Tap for more steps...
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Tap for more steps...
Step 2.3.1
Solve for in .
Tap for more steps...
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Simplify each term.
Tap for more steps...
Step 2.3.1.2.1
Raise to the power of .
Step 2.3.1.2.2
Move to the left of .
Step 2.3.1.2.3
Move to the left of .
Step 2.3.1.3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.1.3.1
Subtract from both sides of the equation.
Step 2.3.1.3.2
Add to both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify .
Tap for more steps...
Step 2.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.2.1.1
Remove parentheses.
Step 2.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.2.2.1
Simplify .
Tap for more steps...
Step 2.3.2.2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.2.1.1.2
Move to the left of .
Step 2.3.2.2.2.1.1.3
Move to the left of .
Step 2.3.2.2.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.2.2.2.1.2.1
Subtract from .
Step 2.3.2.2.2.1.2.2
Add and .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify .
Tap for more steps...
Step 2.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.4.1.1
Remove parentheses.
Step 2.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.4.2.1
Simplify .
Tap for more steps...
Step 2.3.2.4.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.4.2.1.1.1
Raise to the power of .
Step 2.3.2.4.2.1.1.2
Move to the left of .
Step 2.3.2.4.2.1.1.3
Move to the left of .
Step 2.3.2.4.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.2.4.2.1.2.1
Subtract from .
Step 2.3.2.4.2.1.2.2
Add and .
Step 2.3.3
Solve for in .
Tap for more steps...
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Add to both sides of the equation.
Step 2.3.3.2.3
Add and .
Step 2.3.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 2.3.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 2.3.3.3.3.1
Simplify each term.
Tap for more steps...
Step 2.3.3.3.3.1.1
Cancel the common factor of and .
Tap for more steps...
Step 2.3.3.3.3.1.1.1
Factor out of .
Step 2.3.3.3.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.3.3.1.1.2.1
Factor out of .
Step 2.3.3.3.3.1.1.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.1.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.2
Move the negative in front of the fraction.
Step 2.3.3.3.3.1.3
Cancel the common factor of and .
Tap for more steps...
Step 2.3.3.3.3.1.3.1
Factor out of .
Step 2.3.3.3.3.1.3.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.3.3.1.3.2.1
Factor out of .
Step 2.3.3.3.3.1.3.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.3.2.3
Rewrite the expression.
Step 2.3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.4.2.1
Simplify .
Tap for more steps...
Step 2.3.4.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Multiply .
Tap for more steps...
Step 2.3.4.2.1.1.2.1
Multiply by .
Step 2.3.4.2.1.1.2.2
Combine and .
Step 2.3.4.2.1.1.3
Multiply .
Tap for more steps...
Step 2.3.4.2.1.1.3.1
Combine and .
Step 2.3.4.2.1.1.3.2
Multiply by .
Step 2.3.4.2.1.1.4
Move the negative in front of the fraction.
Step 2.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.3
Combine and .
Step 2.3.4.2.1.4
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Find the common denominator.
Tap for more steps...
Step 2.3.4.2.1.5.1
Multiply by .
Step 2.3.4.2.1.5.2
Multiply by .
Step 2.3.4.2.1.5.3
Write as a fraction with denominator .
Step 2.3.4.2.1.5.4
Multiply by .
Step 2.3.4.2.1.5.5
Multiply by .
Step 2.3.4.2.1.5.6
Reorder the factors of .
Step 2.3.4.2.1.5.7
Multiply by .
Step 2.3.4.2.1.6
Combine the numerators over the common denominator.
Step 2.3.4.2.1.7
Simplify each term.
Tap for more steps...
Step 2.3.4.2.1.7.1
Multiply by .
Step 2.3.4.2.1.7.2
Add and .
Step 2.3.4.2.1.7.3
Multiply by .
Step 2.3.4.2.1.7.4
Multiply by .
Step 2.3.4.2.1.8
Subtract from .
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Tap for more steps...
Step 2.3.4.4.1
Simplify .
Tap for more steps...
Step 2.3.4.4.1.1
Simplify each term.
Tap for more steps...
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.3.4.4.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.4.1.1.2.2
Factor out of .
Step 2.3.4.4.1.1.2.3
Cancel the common factor.
Step 2.3.4.4.1.1.2.4
Rewrite the expression.
Step 2.3.4.4.1.1.3
Multiply by .
Step 2.3.4.4.1.1.4
Cancel the common factor of .
Tap for more steps...
Step 2.3.4.4.1.1.4.1
Factor out of .
Step 2.3.4.4.1.1.4.2
Factor out of .
Step 2.3.4.4.1.1.4.3
Cancel the common factor.
Step 2.3.4.4.1.1.4.4
Rewrite the expression.
Step 2.3.4.4.1.1.5
Rewrite as .
Step 2.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.3
Combine and .
Step 2.3.4.4.1.4
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Simplify the numerator.
Tap for more steps...
Step 2.3.4.4.1.5.1
Multiply by .
Step 2.3.4.4.1.5.2
Subtract from .
Step 2.3.4.4.1.6
Move the negative in front of the fraction.
Step 2.3.4.4.1.7
Add and .
Step 2.3.5
Solve for in .
Tap for more steps...
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Multiply both sides by .
Step 2.3.5.3
Simplify.
Tap for more steps...
Step 2.3.5.3.1
Simplify the left side.
Tap for more steps...
Step 2.3.5.3.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.5.3.1.1.1
Cancel the common factor.
Step 2.3.5.3.1.1.2
Rewrite the expression.
Step 2.3.5.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.5.3.2.1
Multiply by .
Step 2.3.5.4
Solve for .
Tap for more steps...
Step 2.3.5.4.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.5.4.1.1
Add to both sides of the equation.
Step 2.3.5.4.1.2
Add and .
Step 2.3.5.4.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.3.5.4.2.1
Divide each term in by .
Step 2.3.5.4.2.2
Simplify the left side.
Tap for more steps...
Step 2.3.5.4.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.5.4.2.2.1.1
Cancel the common factor.
Step 2.3.5.4.2.2.1.2
Divide by .
Step 2.3.5.4.2.3
Simplify the right side.
Tap for more steps...
Step 2.3.5.4.2.3.1
Cancel the common factor of and .
Tap for more steps...
Step 2.3.5.4.2.3.1.1
Factor out of .
Step 2.3.5.4.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.5.4.2.3.1.2.1
Factor out of .
Step 2.3.5.4.2.3.1.2.2
Cancel the common factor.
Step 2.3.5.4.2.3.1.2.3
Rewrite the expression.
Step 2.3.6
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Tap for more steps...
Step 2.3.6.2.1
Simplify .
Tap for more steps...
Step 2.3.6.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.6.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.6.2.1.1.1.1
Factor out of .
Step 2.3.6.2.1.1.1.2
Factor out of .
Step 2.3.6.2.1.1.1.3
Cancel the common factor.
Step 2.3.6.2.1.1.1.4
Rewrite the expression.
Step 2.3.6.2.1.1.2
Combine and .
Step 2.3.6.2.1.1.3
Multiply by .
Step 2.3.6.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.6.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 2.3.6.2.1.3.1
Multiply by .
Step 2.3.6.2.1.3.2
Multiply by .
Step 2.3.6.2.1.4
Combine the numerators over the common denominator.
Step 2.3.6.2.1.5
Simplify the numerator.
Tap for more steps...
Step 2.3.6.2.1.5.1
Multiply by .
Step 2.3.6.2.1.5.2
Subtract from .
Step 2.3.6.2.1.6
Cancel the common factor of and .
Tap for more steps...
Step 2.3.6.2.1.6.1
Factor out of .
Step 2.3.6.2.1.6.2
Cancel the common factors.
Tap for more steps...
Step 2.3.6.2.1.6.2.1
Factor out of .
Step 2.3.6.2.1.6.2.2
Cancel the common factor.
Step 2.3.6.2.1.6.2.3
Rewrite the expression.
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Tap for more steps...
Step 2.3.6.4.1
Simplify .
Tap for more steps...
Step 2.3.6.4.1.1
Simplify each term.
Tap for more steps...
Step 2.3.6.4.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 2.3.6.4.1.1.2
Multiply .
Tap for more steps...
Step 2.3.6.4.1.1.2.1
Multiply by .
Step 2.3.6.4.1.1.2.2
Multiply by .
Step 2.3.6.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.6.4.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 2.3.6.4.1.3.1
Multiply by .
Step 2.3.6.4.1.3.2
Multiply by .
Step 2.3.6.4.1.4
Combine the numerators over the common denominator.
Step 2.3.6.4.1.5
Simplify the numerator.
Tap for more steps...
Step 2.3.6.4.1.5.1
Multiply by .
Step 2.3.6.4.1.5.2
Add and .
Step 2.3.6.4.1.6
Cancel the common factor of and .
Tap for more steps...
Step 2.3.6.4.1.6.1
Factor out of .
Step 2.3.6.4.1.6.2
Cancel the common factors.
Tap for more steps...
Step 2.3.6.4.1.6.2.1
Factor out of .
Step 2.3.6.4.1.6.2.2
Cancel the common factor.
Step 2.3.6.4.1.6.2.3
Rewrite the expression.
Step 2.3.6.4.1.7
Move the negative in front of the fraction.
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Tap for more steps...
Step 2.4.1
Calculate the value of such that when , , , and .
Tap for more steps...
Step 2.4.1.1
Simplify each term.
Tap for more steps...
Step 2.4.1.1.1
Raise to the power of .
Step 2.4.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.4.1.1.2.1
Move the leading negative in into the numerator.
Step 2.4.1.1.2.2
Factor out of .
Step 2.4.1.1.2.3
Factor out of .
Step 2.4.1.1.2.4
Cancel the common factor.
Step 2.4.1.1.2.5
Rewrite the expression.
Step 2.4.1.1.3
Combine and .
Step 2.4.1.1.4
Multiply by .
Step 2.4.1.1.5
Move the negative in front of the fraction.
Step 2.4.1.1.6
Cancel the common factor of .
Tap for more steps...
Step 2.4.1.1.6.1
Factor out of .
Step 2.4.1.1.6.2
Factor out of .
Step 2.4.1.1.6.3
Cancel the common factor.
Step 2.4.1.1.6.4
Rewrite the expression.
Step 2.4.1.1.7
Combine and .
Step 2.4.1.1.8
Multiply by .
Step 2.4.1.1.9
Move the negative in front of the fraction.
Step 2.4.1.2
Combine fractions.
Tap for more steps...
Step 2.4.1.2.1
Combine the numerators over the common denominator.
Step 2.4.1.2.2
Simplify the expression.
Tap for more steps...
Step 2.4.1.2.2.1
Subtract from .
Step 2.4.1.2.2.2
Add and .
Step 2.4.1.2.2.3
Divide by .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Tap for more steps...
Step 2.4.3.1
Simplify each term.
Tap for more steps...
Step 2.4.3.1.1
Raise to the power of .
Step 2.4.3.1.2
Multiply .
Tap for more steps...
Step 2.4.3.1.2.1
Multiply by .
Step 2.4.3.1.2.2
Combine and .
Step 2.4.3.1.2.3
Multiply by .
Step 2.4.3.1.3
Move the negative in front of the fraction.
Step 2.4.3.1.4
Multiply .
Tap for more steps...
Step 2.4.3.1.4.1
Combine and .
Step 2.4.3.1.4.2
Multiply by .
Step 2.4.3.2
Simplify terms.
Tap for more steps...
Step 2.4.3.2.1
Combine the numerators over the common denominator.
Step 2.4.3.2.2
Add and .
Step 2.4.3.2.3
Cancel the common factor of and .
Tap for more steps...
Step 2.4.3.2.3.1
Factor out of .
Step 2.4.3.2.3.2
Cancel the common factors.
Tap for more steps...
Step 2.4.3.2.3.2.1
Factor out of .
Step 2.4.3.2.3.2.2
Cancel the common factor.
Step 2.4.3.2.3.2.3
Rewrite the expression.
Step 2.4.3.2.4
Combine the numerators over the common denominator.
Step 2.4.3.2.5
Simplify the expression.
Tap for more steps...
Step 2.4.3.2.5.1
Add and .
Step 2.4.3.2.5.2
Divide by .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.5
Calculate the value of such that when , , , and .
Tap for more steps...
Step 2.4.5.1
Simplify each term.
Tap for more steps...
Step 2.4.5.1.1
Raise to the power of .
Step 2.4.5.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.4.5.1.2.1
Move the leading negative in into the numerator.
Step 2.4.5.1.2.2
Factor out of .
Step 2.4.5.1.2.3
Factor out of .
Step 2.4.5.1.2.4
Cancel the common factor.
Step 2.4.5.1.2.5
Rewrite the expression.
Step 2.4.5.1.3
Combine and .
Step 2.4.5.1.4
Multiply by .
Step 2.4.5.1.5
Move the negative in front of the fraction.
Step 2.4.5.1.6
Cancel the common factor of .
Tap for more steps...
Step 2.4.5.1.6.1
Factor out of .
Step 2.4.5.1.6.2
Factor out of .
Step 2.4.5.1.6.3
Cancel the common factor.
Step 2.4.5.1.6.4
Rewrite the expression.
Step 2.4.5.1.7
Combine and .
Step 2.4.5.1.8
Multiply by .
Step 2.4.5.2
Combine fractions.
Tap for more steps...
Step 2.4.5.2.1
Combine the numerators over the common denominator.
Step 2.4.5.2.2
Simplify the expression.
Tap for more steps...
Step 2.4.5.2.2.1
Add and .
Step 2.4.5.2.2.2
Add and .
Step 2.4.5.2.2.3
Divide by .
Step 2.4.6
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.7
Since for the corresponding values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all , the function is quadratic and follows the form .