Pre-Algebra Examples

Find the Bounds of the Zeros f(x)=-16x^2+42(9)+12
f(x)=-16x2+42(9)+12f(x)=16x2+42(9)+12
Step 1
Check the leading coefficient of the function. This number is the coefficient of the expression with the largest degree.
Largest Degree: 22
Leading Coefficient: -1616
Step 2
The leading coefficient needs to be 11. If it is not, divide the expression by it to make it 11.
Tap for more steps...
Step 2.1
Combine the numerators over the common denominator.
f(x)=-16x2+42(9)+12-16f(x)=16x2+42(9)+1216
Step 2.2
Multiply 4242 by 99.
f(x)=-16x2+378+12-16f(x)=16x2+378+1216
Step 2.3
Add 378378 and 1212.
f(x)=-16x2+390-16f(x)=16x2+39016
Step 2.4
Cancel the common factor of -16x2+39016x2+390 and -1616.
Tap for more steps...
Step 2.4.1
Factor 22 out of -16x216x2.
f(x)=2(-8x2)+390-16f(x)=2(8x2)+39016
Step 2.4.2
Factor 22 out of 390390.
f(x)=2(-8x2)+2(195)-16f(x)=2(8x2)+2(195)16
Step 2.4.3
Factor 22 out of 2(-8x2)+2(195)2(8x2)+2(195).
f(x)=2(-8x2+195)-16f(x)=2(8x2+195)16
Step 2.4.4
Cancel the common factors.
Tap for more steps...
Step 2.4.4.1
Factor 22 out of -1616.
f(x)=2(-8x2+195)2(-8)f(x)=2(8x2+195)2(8)
Step 2.4.4.2
Cancel the common factor.
f(x)=2(-8x2+195)2-8
Step 2.4.4.3
Rewrite the expression.
f(x)=-8x2+195-8
f(x)=-8x2+195-8
f(x)=-8x2+195-8
Step 2.5
Move the negative in front of the fraction.
f(x)=--8x2+1958
Step 2.6
Factor -1 out of -8x2.
f(x)=--(8x2)+1958
Step 2.7
Rewrite 195 as -1(-195).
f(x)=--(8x2)-1-1958
Step 2.8
Factor -1 out of -(8x2)-1(-195).
f(x)=--(8x2-195)8
Step 2.9
Rewrite -(8x2-195) as -1(8x2-195).
f(x)=--1(8x2-195)8
Step 2.10
Move the negative in front of the fraction.
f(x)=8x2-1958
Step 2.11
Multiply -1 by -1.
f(x)=1(8x2-1958)
Step 2.12
Multiply 8x2-1958 by 1.
f(x)=8x2-1958
f(x)=8x2-1958
Step 3
Create a list of the coefficients of the function except the leading coefficient of 1.
0
Step 4
There will be two bound options, b1 and b2, the smaller of which is the answer. To calculate the first bound option, find the absolute value of the largest coefficient from the list of coefficients. Then add 1.
Tap for more steps...
Step 4.1
Arrange the terms in ascending order.
b1=0
Step 4.2
Add 0 and 1.
b1=1
b1=1
Step 5
To calculate the second bound option, sum the absolute values of the coefficients from the list of coefficients. If the sum is greater than 1, use that number. If not, use 1.
Tap for more steps...
Step 5.1
Arrange the terms in ascending order.
b2=0,1
Step 5.2
The maximum value is the largest value in the arranged data set.
b2=1
b2=1
Step 6
The bound options are the same.
Bound: 1
Step 7
Every real root on f(x)=-16x2+42(9)+12 lies between -1 and 1.
-1 and 1
 [x2  12  π  xdx ]