Enter a problem...
Pre-Algebra Examples
f(x)=-16x2+42(9)+12f(x)=−16x2+42(9)+12
Step 1
Check the leading coefficient of the function. This number is the coefficient of the expression with the largest degree.
Largest Degree: 22
Leading Coefficient: -16−16
Step 2
Step 2.1
Combine the numerators over the common denominator.
f(x)=-16x2+42(9)+12-16f(x)=−16x2+42(9)+12−16
Step 2.2
Multiply 4242 by 99.
f(x)=-16x2+378+12-16f(x)=−16x2+378+12−16
Step 2.3
Add 378378 and 1212.
f(x)=-16x2+390-16f(x)=−16x2+390−16
Step 2.4
Cancel the common factor of -16x2+390−16x2+390 and -16−16.
Step 2.4.1
Factor 22 out of -16x2−16x2.
f(x)=2(-8x2)+390-16f(x)=2(−8x2)+390−16
Step 2.4.2
Factor 22 out of 390390.
f(x)=2(-8x2)+2(195)-16f(x)=2(−8x2)+2(195)−16
Step 2.4.3
Factor 22 out of 2(-8x2)+2(195)2(−8x2)+2(195).
f(x)=2(-8x2+195)-16f(x)=2(−8x2+195)−16
Step 2.4.4
Cancel the common factors.
Step 2.4.4.1
Factor 22 out of -16−16.
f(x)=2(-8x2+195)2(-8)f(x)=2(−8x2+195)2(−8)
Step 2.4.4.2
Cancel the common factor.
f(x)=2(-8x2+195)2⋅-8
Step 2.4.4.3
Rewrite the expression.
f(x)=-8x2+195-8
f(x)=-8x2+195-8
f(x)=-8x2+195-8
Step 2.5
Move the negative in front of the fraction.
f(x)=--8x2+1958
Step 2.6
Factor -1 out of -8x2.
f(x)=--(8x2)+1958
Step 2.7
Rewrite 195 as -1(-195).
f(x)=--(8x2)-1⋅-1958
Step 2.8
Factor -1 out of -(8x2)-1(-195).
f(x)=--(8x2-195)8
Step 2.9
Rewrite -(8x2-195) as -1(8x2-195).
f(x)=--1(8x2-195)8
Step 2.10
Move the negative in front of the fraction.
f(x)=8x2-1958
Step 2.11
Multiply -1 by -1.
f(x)=1(8x2-1958)
Step 2.12
Multiply 8x2-1958 by 1.
f(x)=8x2-1958
f(x)=8x2-1958
Step 3
Create a list of the coefficients of the function except the leading coefficient of 1.
0
Step 4
Step 4.1
Arrange the terms in ascending order.
b1=0
Step 4.2
Add 0 and 1.
b1=1
b1=1
Step 5
Step 5.1
Arrange the terms in ascending order.
b2=0,1
Step 5.2
The maximum value is the largest value in the arranged data set.
b2=1
b2=1
Step 6
The bound options are the same.
Bound: 1
Step 7
Every real root on f(x)=-16x2+42(9)+12 lies between -1 and 1.
-1 and 1