Enter a problem...
Pre-Algebra Examples
Step 1
To find the y-intercept(s), substitute in for and solve for .
Step 2
Step 2.1
Simplify .
Step 2.1.1
Combine the opposite terms in .
Step 2.1.1.1
Subtract from .
Step 2.1.1.2
Subtract from .
Step 2.1.1.3
Subtract from .
Step 2.1.2
Simplify each term.
Step 2.1.2.1
Subtract from .
Step 2.1.2.2
Subtract from .
Step 2.1.2.3
Subtract from .
Step 2.1.2.4
Expand using the FOIL Method.
Step 2.1.2.4.1
Apply the distributive property.
Step 2.1.2.4.2
Apply the distributive property.
Step 2.1.2.4.3
Apply the distributive property.
Step 2.1.2.5
Simplify and combine like terms.
Step 2.1.2.5.1
Simplify each term.
Step 2.1.2.5.1.1
Rewrite using the commutative property of multiplication.
Step 2.1.2.5.1.2
Multiply by by adding the exponents.
Step 2.1.2.5.1.2.1
Move .
Step 2.1.2.5.1.2.2
Multiply by .
Step 2.1.2.5.1.3
Move to the left of .
Step 2.1.2.5.1.4
Multiply by .
Step 2.1.2.5.1.5
Multiply by .
Step 2.1.2.5.2
Add and .
Step 2.1.2.6
Rewrite the division as a fraction.
Step 2.1.2.7
Subtract from .
Step 2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.1.4
Simplify terms.
Step 2.1.4.1
Combine and .
Step 2.1.4.2
Combine the numerators over the common denominator.
Step 2.1.5
Simplify the numerator.
Step 2.1.5.1
Apply the distributive property.
Step 2.1.5.2
Rewrite using the commutative property of multiplication.
Step 2.1.5.3
Multiply by .
Step 2.1.5.4
Simplify each term.
Step 2.1.5.4.1
Multiply by by adding the exponents.
Step 2.1.5.4.1.1
Move .
Step 2.1.5.4.1.2
Multiply by .
Step 2.1.5.4.1.2.1
Raise to the power of .
Step 2.1.5.4.1.2.2
Use the power rule to combine exponents.
Step 2.1.5.4.1.3
Add and .
Step 2.1.5.4.2
Multiply by .
Step 2.1.5.4.3
Multiply by .
Step 2.1.6
To write as a fraction with a common denominator, multiply by .
Step 2.1.7
Combine the numerators over the common denominator.
Step 2.1.8
Find the common denominator.
Step 2.1.8.1
Write as a fraction with denominator .
Step 2.1.8.2
Multiply by .
Step 2.1.8.3
Multiply by .
Step 2.1.8.4
Write as a fraction with denominator .
Step 2.1.8.5
Multiply by .
Step 2.1.8.6
Multiply by .
Step 2.1.9
Combine the numerators over the common denominator.
Step 2.1.10
Simplify each term.
Step 2.1.10.1
Apply the distributive property.
Step 2.1.10.2
Rewrite using the commutative property of multiplication.
Step 2.1.10.3
Move to the left of .
Step 2.1.10.4
Multiply by by adding the exponents.
Step 2.1.10.4.1
Move .
Step 2.1.10.4.2
Multiply by .
Step 2.1.10.5
Apply the distributive property.
Step 2.1.10.6
Multiply by .
Step 2.1.10.7
Multiply by .
Step 2.1.10.8
Apply the distributive property.
Step 2.1.10.9
Multiply .
Step 2.1.10.9.1
Multiply by .
Step 2.1.10.9.2
Multiply by .
Step 2.1.10.10
Multiply by .
Step 2.1.11
Simplify terms.
Step 2.1.11.1
Add and .
Step 2.1.11.2
Subtract from .
Step 2.1.11.3
Add and .
Step 2.1.11.4
Simplify the expression.
Step 2.1.11.4.1
Subtract from .
Step 2.1.11.4.2
Add and .
Step 2.1.11.4.3
Reorder terms.
Step 2.1.11.5
Factor out of .
Step 2.1.11.6
Rewrite as .
Step 2.1.11.7
Factor out of .
Step 2.1.11.8
Rewrite negatives.
Step 2.1.11.8.1
Rewrite as .
Step 2.1.11.8.2
Move the negative in front of the fraction.
Step 2.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 3
y-intercept(s) in point form.
y-intercept(s):
Step 4