Pre-Algebra Examples

Find the Slope x+ natural log of y-x^2y^3=0
x+ln(y)-x2y3=0x+ln(y)x2y3=0
Step 1
Rewrite in slope-intercept form.
Tap for more steps...
Step 1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 1.2
To solve for y, rewrite the equation using properties of logarithms.
eln(y)=e-x+x2y3
Step 1.3
Rewrite ln(y)=-x+x2y3 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e-x+x2y3=y
Step 1.4
Solve for y.
Tap for more steps...
Step 1.4.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e-x+x2y3)=ln(y)
Step 1.4.2
Expand the left side.
Tap for more steps...
Step 1.4.2.1
Expand ln(e-x+x2y3) by moving -x+x2y3 outside the logarithm.
(-x+x2y3)ln(e)=ln(y)
Step 1.4.2.2
The natural logarithm of e is 1.
(-x+x2y3)1=ln(y)
Step 1.4.2.3
Multiply -x+x2y3 by 1.
-x+x2y3=ln(y)
-x+x2y3=ln(y)
Step 1.4.3
Subtract ln(y) from both sides of the equation.
-x+x2y3-ln(y)=0
Step 1.4.4
To solve for y, rewrite the equation using properties of logarithms.
eln(y)=e-x+x2y3
Step 1.4.5
Rewrite ln(y)=-x+x2y3 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e-x+x2y3=y
Step 1.4.6
Solve for y.
Tap for more steps...
Step 1.4.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e-x+x2y3)=ln(y)
Step 1.4.6.2
Expand the left side.
Tap for more steps...
Step 1.4.6.2.1
Expand ln(e-x+x2y3) by moving -x+x2y3 outside the logarithm.
(-x+x2y3)ln(e)=ln(y)
Step 1.4.6.2.2
The natural logarithm of e is 1.
(-x+x2y3)1=ln(y)
Step 1.4.6.2.3
Multiply -x+x2y3 by 1.
-x+x2y3=ln(y)
-x+x2y3=ln(y)
Step 1.4.6.3
Subtract ln(y) from both sides of the equation.
-x+x2y3-ln(y)=0
Step 1.4.6.4
To solve for y, rewrite the equation using properties of logarithms.
eln(y)=e-x+x2y3
Step 1.4.6.5
Rewrite ln(y)=-x+x2y3 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e-x+x2y3=y
Step 1.4.6.6
Solve for y.
Tap for more steps...
Step 1.4.6.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e-x+x2y3)=ln(y)
Step 1.4.6.6.2
Expand the left side.
Tap for more steps...
Step 1.4.6.6.2.1
Expand ln(e-x+x2y3) by moving -x+x2y3 outside the logarithm.
(-x+x2y3)ln(e)=ln(y)
Step 1.4.6.6.2.2
The natural logarithm of e is 1.
(-x+x2y3)1=ln(y)
Step 1.4.6.6.2.3
Multiply -x+x2y3 by 1.
-x+x2y3=ln(y)
-x+x2y3=ln(y)
Step 1.4.6.6.3
Subtract ln(y) from both sides of the equation.
-x+x2y3-ln(y)=0
Step 1.4.6.6.4
To solve for y, rewrite the equation using properties of logarithms.
eln(y)=e-x+x2y3
Step 1.4.6.6.5
Rewrite ln(y)=-x+x2y3 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e-x+x2y3=y
Step 1.4.6.6.6
Solve for y.
Tap for more steps...
Step 1.4.6.6.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e-x+x2y3)=ln(y)
Step 1.4.6.6.6.2
Expand the left side.
Tap for more steps...
Step 1.4.6.6.6.2.1
Expand ln(e-x+x2y3) by moving -x+x2y3 outside the logarithm.
(-x+x2y3)ln(e)=ln(y)
Step 1.4.6.6.6.2.2
The natural logarithm of e is 1.
(-x+x2y3)1=ln(y)
Step 1.4.6.6.6.2.3
Multiply -x+x2y3 by 1.
-x+x2y3=ln(y)
-x+x2y3=ln(y)
-x+x2y3=ln(y)
-x+x2y3=ln(y)
-x+x2y3=ln(y)
-x+x2y3=ln(y)
-x+x2y3=ln(y)
Step 2
The equation is not linear, so a constant slope does not exist.
Not Linear
 [x2  12  π  xdx ]