Enter a problem...
Pre-Algebra Examples
log(3x)=log(2⋅(3⋅x))log(3x)=log(2⋅(3⋅x))
Step 1
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Simplify the right side.
Step 1.2.1
Multiply 33 by 22.
log(3x)=log(6x)log(3x)=log(6x)
log(3x)=log(6x)log(3x)=log(6x)
Step 1.3
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
3x=6x3x=6x
Step 1.4
Solve for xx.
Step 1.4.1
Move all terms containing xx to the left side of the equation.
Step 1.4.1.1
Subtract 6x6x from both sides of the equation.
3x-6x=03x−6x=0
Step 1.4.1.2
Subtract 6x6x from 3x3x.
-3x=0−3x=0
-3x=0−3x=0
Step 1.4.2
Divide each term in -3x=0−3x=0 by -3−3 and simplify.
Step 1.4.2.1
Divide each term in -3x=0−3x=0 by -3−3.
-3x-3=0-3−3x−3=0−3
Step 1.4.2.2
Simplify the left side.
Step 1.4.2.2.1
Cancel the common factor of -3−3.
Step 1.4.2.2.1.1
Cancel the common factor.
-3x-3=0-3
Step 1.4.2.2.1.2
Divide x by 1.
x=0-3
x=0-3
x=0-3
Step 1.4.2.3
Simplify the right side.
Step 1.4.2.3.1
Divide 0 by -3.
x=0
x=0
x=0
x=0
Step 1.5
Exclude the solutions that do not make log(3x)=log(6x) true.
No solution
No solution
Step 2
The equation is not linear, so a constant slope does not exist.
Not Linear