Pre-Algebra Examples

Find the Lower or First Quartile -5/6 , 5/3
,
Step 1
There are observations, so the median is the mean of the two middle numbers of the arranged set of data. Splitting the observations either side of the median gives two groups of observations. The median of the lower half of data is the lower or first quartile. The median of the upper half of data is the upper or third quartile.
The median of the lower half of data is the lower or first quartile
The median of the upper half of data is the upper or third quartile
Step 2
Arrange the terms in ascending order.
Step 3
Find the median of .
Tap for more steps...
Step 3.1
The median is the middle term in the arranged data set. In the case of an even number of terms, the median is the average of the two middle terms.
Step 3.2
Remove parentheses.
Step 3.3
Simplify the numerator.
Tap for more steps...
Step 3.3.1
To write as a fraction with a common denominator, multiply by .
Step 3.3.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 3.3.2.1
Multiply by .
Step 3.3.2.2
Multiply by .
Step 3.3.3
Combine the numerators over the common denominator.
Step 3.3.4
Simplify the numerator.
Tap for more steps...
Step 3.3.4.1
Multiply by .
Step 3.3.4.2
Add and .
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
Step 3.5
Multiply .
Tap for more steps...
Step 3.5.1
Multiply by .
Step 3.5.2
Multiply by .
Step 3.6
Convert the median to decimal.
Step 4
The lower half of data is the set below the median.