Pre-Algebra Examples

Find the GCF xy^4 , xy^3 , xy
, ,
Step 1
Since contains both numbers and variables, there are two steps to find the GCF (HCF). Find GCF for the numeric part, then find GCF for the variable part.
Steps to find the GCF for :
1. Find the GCF for the numerical part
2. Find the GCF for the variable part
3. Multiply the values together
Step 2
Find the common factors for the numerical part:
Step 3
The factors for are .
Tap for more steps...
Step 3.1
The factors for are all numbers between and , which divide evenly.
Check numbers between and
Step 3.2
Find the factor pairs of where .
Step 3.3
List the factors for .
Step 4
The factors for are .
Tap for more steps...
Step 4.1
The factors for are all numbers between and , which divide evenly.
Check numbers between and
Step 4.2
Find the factor pairs of where .
Step 4.3
List the factors for .
Step 5
The factors for are .
Tap for more steps...
Step 5.1
The factors for are all numbers between and , which divide evenly.
Check numbers between and
Step 5.2
Find the factor pairs of where .
Step 5.3
List the factors for .
Step 6
List all the factors for to find the common factors.
:
:
:
Step 7
The common factors for are .
Step 8
The GCF for the numerical part is .
Step 9
Next, find the common factors for the variable part:
Step 10
The factor for is itself.
Step 11
The factors for are .
Step 12
The factor for is itself.
Step 13
The factors for are .
Step 14
The factor for is itself.
Step 15
The factor for is itself.
Step 16
List all the factors for to find the common factors.
Step 17
The common factors for the variables are .
Step 18
The GCF for the variable part is .
Step 19
Multiply the GCF of the numerical part and the GCF of the variable part .