Pre-Algebra Examples

Graph f(x)=(3x^6-27x^4+x^3-6)÷(x+3)
Step 1
Find where the expression is undefined.
Step 2
Consider the rational function where is the degree of the numerator and is the degree of the denominator.
1. If , then the x-axis, , is the horizontal asymptote.
2. If , then the horizontal asymptote is the line .
3. If , then there is no horizontal asymptote (there is an oblique asymptote).
Step 3
Find and .
Step 4
Since , there is no horizontal asymptote.
No Horizontal Asymptotes
Step 5
Find the oblique asymptote using polynomial division.
Tap for more steps...
Step 5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++-+++-
Step 5.2
Divide the highest order term in the dividend by the highest order term in divisor .
++-+++-
Step 5.3
Multiply the new quotient term by the divisor.
++-+++-
++
Step 5.4
The expression needs to be subtracted from the dividend, so change all the signs in
++-+++-
--
Step 5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++-+++-
--
-
Step 5.6
Pull the next terms from the original dividend down into the current dividend.
++-+++-
--
--
Step 5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
++-+++-
--
--
Step 5.8
Multiply the new quotient term by the divisor.
-
++-+++-
--
--
--
Step 5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
++-+++-
--
--
++
Step 5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
++-+++-
--
--
++
Step 5.11
Pull the next term from the original dividend down into the current dividend.
-
++-+++-
--
--
++
++
Step 5.12
Divide the highest order term in the dividend by the highest order term in divisor .
-++
++-+++-
--
--
++
++
Step 5.13
Multiply the new quotient term by the divisor.
-++
++-+++-
--
--
++
++
++
Step 5.14
The expression needs to be subtracted from the dividend, so change all the signs in
-++
++-+++-
--
--
++
++
--
Step 5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++
++-+++-
--
--
++
++
--
-
Step 5.16
Pull the next terms from the original dividend down into the current dividend.
-++
++-+++-
--
--
++
++
--
-+
Step 5.17
Divide the highest order term in the dividend by the highest order term in divisor .
-++-
++-+++-
--
--
++
++
--
-+
Step 5.18
Multiply the new quotient term by the divisor.
-++-
++-+++-
--
--
++
++
--
-+
--
Step 5.19
The expression needs to be subtracted from the dividend, so change all the signs in
-++-
++-+++-
--
--
++
++
--
-+
++
Step 5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++-
++-+++-
--
--
++
++
--
-+
++
+
Step 5.21
Pull the next terms from the original dividend down into the current dividend.
-++-
++-+++-
--
--
++
++
--
-+
++
+-
Step 5.22
Divide the highest order term in the dividend by the highest order term in divisor .
-++-+
++-+++-
--
--
++
++
--
-+
++
+-
Step 5.23
Multiply the new quotient term by the divisor.
-++-+
++-+++-
--
--
++
++
--
-+
++
+-
++
Step 5.24
The expression needs to be subtracted from the dividend, so change all the signs in
-++-+
++-+++-
--
--
++
++
--
-+
++
+-
--
Step 5.25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++-+
++-+++-
--
--
++
++
--
-+
++
+-
--
-
Step 5.26
The final answer is the quotient plus the remainder over the divisor.
Step 5.27
The oblique asymptote is the polynomial portion of the long division result.
Step 6
This is the set of all asymptotes.
Vertical Asymptotes:
No Horizontal Asymptotes
Oblique Asymptotes:
Step 7