Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Convert to an improper fraction.
Step 1.1.1.1
A mixed number is an addition of its whole and fractional parts.
Step 1.1.1.2
Add and .
Step 1.1.1.2.1
To write as a fraction with a common denominator, multiply by .
Step 1.1.1.2.2
Combine and .
Step 1.1.1.2.3
Combine the numerators over the common denominator.
Step 1.1.1.2.4
Simplify the numerator.
Step 1.1.1.2.4.1
Multiply by .
Step 1.1.1.2.4.2
Add and .
Step 1.1.2
Combine and .
Step 2
Step 2.1
Convert to an improper fraction.
Step 2.1.1
A mixed number is an addition of its whole and fractional parts.
Step 2.1.2
Add and .
Step 2.1.2.1
To write as a fraction with a common denominator, multiply by .
Step 2.1.2.2
Combine and .
Step 2.1.2.3
Combine the numerators over the common denominator.
Step 2.1.2.4
Simplify the numerator.
Step 2.1.2.4.1
Multiply by .
Step 2.1.2.4.2
Add and .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
To write as a fraction with a common denominator, multiply by .
Step 3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.3.1
Multiply by .
Step 3.3.2
Multiply by .
Step 3.4
Combine the numerators over the common denominator.
Step 3.5
Simplify the numerator.
Step 3.5.1
Multiply by .
Step 3.5.2
Subtract from .
Step 3.6
Cancel the common factor of and .
Step 3.6.1
Factor out of .
Step 3.6.2
Cancel the common factors.
Step 3.6.2.1
Factor out of .
Step 3.6.2.2
Cancel the common factor.
Step 3.6.2.3
Rewrite the expression.
Step 4
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: