Enter a problem...
Pre-Algebra Examples
xx-3+21x2-4=18x2-9xx−3+21x2−4=18x2−9
Step 1
Step 1.1
Simplify the denominator.
Step 1.1.1
Rewrite 4 as 22.
xx-3+21x2-22=18x2-9
Step 1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=2.
xx-3+21(x+2)(x-2)=18x2-9
xx-3+21(x+2)(x-2)=18x2-9
Step 1.2
To write xx-3 as a fraction with a common denominator, multiply by (x+2)(x-2)(x+2)(x-2).
xx-3⋅(x+2)(x-2)(x+2)(x-2)+21(x+2)(x-2)=18x2-9
Step 1.3
To write 21(x+2)(x-2) as a fraction with a common denominator, multiply by x-3x-3.
xx-3⋅(x+2)(x-2)(x+2)(x-2)+21(x+2)(x-2)⋅x-3x-3=18x2-9
Step 1.4
Write each expression with a common denominator of (x-3)(x+2)(x-2), by multiplying each by an appropriate factor of 1.
Step 1.4.1
Multiply xx-3 by (x+2)(x-2)(x+2)(x-2).
x((x+2)(x-2))(x-3)((x+2)(x-2))+21(x+2)(x-2)⋅x-3x-3=18x2-9
Step 1.4.2
Multiply 21(x+2)(x-2) by x-3x-3.
x((x+2)(x-2))(x-3)((x+2)(x-2))+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.4.3
Reorder the factors of (x-3)((x+2)(x-2)).
x((x+2)(x-2))(x+2)(x-2)(x-3)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
x((x+2)(x-2))(x+2)(x-2)(x-3)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.5
Combine the numerators over the common denominator.
x((x+2)(x-2))+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6
Simplify the numerator.
Step 1.6.1
Expand (x+2)(x-2) using the FOIL Method.
Step 1.6.1.1
Apply the distributive property.
x(x(x-2)+2(x-2))+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.1.2
Apply the distributive property.
x(x⋅x+x⋅-2+2(x-2))+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.1.3
Apply the distributive property.
x(x⋅x+x⋅-2+2x+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
x(x⋅x+x⋅-2+2x+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.2
Combine the opposite terms in x⋅x+x⋅-2+2x+2⋅-2.
Step 1.6.2.1
Reorder the factors in the terms x⋅-2 and 2x.
x(x⋅x-2x+2x+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.2.2
Add -2x and 2x.
x(x⋅x+0+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.2.3
Add x⋅x and 0.
x(x⋅x+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
x(x⋅x+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.3
Simplify each term.
Step 1.6.3.1
Multiply x by x.
x(x2+2⋅-2)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.3.2
Multiply 2 by -2.
x(x2-4)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
x(x2-4)+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.4
Apply the distributive property.
x⋅x2+x⋅-4+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.5
Multiply x by x2 by adding the exponents.
Step 1.6.5.1
Multiply x by x2.
Step 1.6.5.1.1
Raise x to the power of 1.
x1x2+x⋅-4+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.5.1.2
Use the power rule aman=am+n to combine exponents.
x1+2+x⋅-4+21(x-3)(x+2)(x-2)(x-3)=18x2-9
x1+2+x⋅-4+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.5.2
Add 1 and 2.
x3+x⋅-4+21(x-3)(x+2)(x-2)(x-3)=18x2-9
x3+x⋅-4+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.6
Move -4 to the left of x.
x3-4⋅x+21(x-3)(x+2)(x-2)(x-3)=18x2-9
Step 1.6.7
Apply the distributive property.
x3-4x+21x+21⋅-3(x+2)(x-2)(x-3)=18x2-9
Step 1.6.8
Multiply 21 by -3.
x3-4x+21x-63(x+2)(x-2)(x-3)=18x2-9
Step 1.6.9
Add -4x and 21x.
x3+17x-63(x+2)(x-2)(x-3)=18x2-9
x3+17x-63(x+2)(x-2)(x-3)=18x2-9
x3+17x-63(x+2)(x-2)(x-3)=18x2-9
Step 2
Step 2.1
Rewrite 9 as 32.
x3+17x-63(x+2)(x-2)(x-3)=18x2-32
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=3.
x3+17x-63(x+2)(x-2)(x-3)=18(x+3)(x-3)
x3+17x-63(x+2)(x-2)(x-3)=18(x+3)(x-3)
Step 3
Graph each side of the equation. The solution is the x-value of the point of intersection.
x≈-4.16642404
Step 4