Enter a problem...
Pre-Algebra Examples
a=12⋅(h(b(1+b⋅2)))a=12⋅(h(b(1+b⋅2)))
Step 1
Remove parentheses.
a=12⋅(hb(1+b⋅2))a=12⋅(hb(1+b⋅2))
Step 2
Remove parentheses.
a=12⋅((hb)(1+b⋅2))a=12⋅((hb)(1+b⋅2))
Step 3
Remove parentheses.
a=12⋅(hb(1+b⋅2))a=12⋅(hb(1+b⋅2))
Step 4
Step 4.1
Move 22 to the left of bb.
a=12⋅(hb(1+2b))a=12⋅(hb(1+2b))
Step 4.2
Simplify by multiplying through.
Step 4.2.1
Apply the distributive property.
a=12⋅(hb⋅1+hb(2b))a=12⋅(hb⋅1+hb(2b))
Step 4.2.2
Simplify the expression.
Step 4.2.2.1
Multiply hh by 11.
a=12⋅(b⋅h+hb(2b))a=12⋅(b⋅h+hb(2b))
Step 4.2.2.2
Rewrite using the commutative property of multiplication.
a=12⋅(b⋅h+2hb⋅b)a=12⋅(b⋅h+2hb⋅b)
a=12⋅(b⋅h+2hb⋅b)a=12⋅(b⋅h+2hb⋅b)
a=12⋅(b⋅h+2hb⋅b)a=12⋅(b⋅h+2hb⋅b)
Step 4.3
Multiply bb by bb by adding the exponents.
Step 4.3.1
Move bb.
a=12⋅(bh+2h(b⋅b))a=12⋅(bh+2h(b⋅b))
Step 4.3.2
Multiply bb by bb.
a=12⋅(bh+2hb2)a=12⋅(bh+2hb2)
a=12⋅(bh+2hb2)a=12⋅(bh+2hb2)
Step 4.4
Apply the distributive property.
a=12(bh)+12(2hb2)a=12(bh)+12(2hb2)
Step 4.5
Multiply 12(bh)12(bh).
Step 4.5.1
Combine bb and 1212.
a=b2h+12(2hb2)a=b2h+12(2hb2)
Step 4.5.2
Combine b2b2 and hh.
a=bh2+12(2hb2)a=bh2+12(2hb2)
a=bh2+12(2hb2)
Step 4.6
Cancel the common factor of 2.
Step 4.6.1
Factor 2 out of 2hb2.
a=bh2+12(2(hb2))
Step 4.6.2
Cancel the common factor.
a=bh2+12(2(hb2))
Step 4.6.3
Rewrite the expression.
a=bh2+hb2
a=bh2+hb2
Step 4.7
Simplify with commuting.
Step 4.7.1
Reorder h and b2.
a=bh2+b2h
Step 4.7.2
Reorder bh2 and b2h.
a=b2h+bh2
a=b2h+bh2
a=b2h+bh2