Pre-Algebra Examples

Simplify (t^3-4t)/(t-t^4)*(t^4-t)/(4t-t^3)
t3-4tt-t4t4-t4t-t3t34ttt4t4t4tt3
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Factor tt out of t3-4tt34t.
Tap for more steps...
Step 1.1.1
Factor tt out of t3t3.
tt2-4tt-t4t4-t4t-t3tt24ttt4t4t4tt3
Step 1.1.2
Factor tt out of -4t4t.
tt2+t-4t-t4t4-t4t-t3tt2+t4tt4t4t4tt3
Step 1.1.3
Factor tt out of tt2+t-4tt2+t4.
t(t2-4)t-t4t4-t4t-t3t(t24)tt4t4t4tt3
t(t2-4)t-t4t4-t4t-t3t(t24)tt4t4t4tt3
Step 1.2
Rewrite 44 as 2222.
t(t2-22)t-t4t4-t4t-t3t(t222)tt4t4t4tt3
Step 1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=ta=t and b=2b=2.
t(t+2)(t-2)t-t4t4-t4t-t3t(t+2)(t2)tt4t4t4tt3
t(t+2)(t-2)t-t4t4-t4t-t3t(t+2)(t2)tt4t4t4tt3
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Factor tt out of t-t4tt4.
Tap for more steps...
Step 2.1.1
Raise tt to the power of 11.
t(t+2)(t-2)t1-t4t4-t4t-t3t(t+2)(t2)t1t4t4t4tt3
Step 2.1.2
Factor tt out of t1t1.
t(t+2)(t-2)t1-t4t4-t4t-t3t(t+2)(t2)t1t4t4t4tt3
Step 2.1.3
Factor tt out of -t4t4.
t(t+2)(t-2)t1+t(-t3)t4-t4t-t3t(t+2)(t2)t1+t(t3)t4t4tt3
Step 2.1.4
Factor tt out of t1+t(-t3)t1+t(t3).
t(t+2)(t-2)t(1-t3)t4-t4t-t3t(t+2)(t2)t(1t3)t4t4tt3
t(t+2)(t-2)t(1-t3)t4-t4t-t3
Step 2.2
Rewrite 1 as 13.
t(t+2)(t-2)t(13-t3)t4-t4t-t3
Step 2.3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=1 and b=t.
t(t+2)(t-2)t((1-t)(12+1t+t2))t4-t4t-t3
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
One to any power is one.
t(t+2)(t-2)t((1-t)(1+1t+t2))t4-t4t-t3
Step 2.4.2
Multiply t by 1.
t(t+2)(t-2)t((1-t)(1+t+t2))t4-t4t-t3
t(t+2)(t-2)t(1-t)(1+t+t2)t4-t4t-t3
t(t+2)(t-2)t(1-t)(1+t+t2)t4-t4t-t3
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Factor t out of t4-t.
Tap for more steps...
Step 3.1.1
Factor t out of t4.
t(t+2)(t-2)t(1-t)(1+t+t2)tt3-t4t-t3
Step 3.1.2
Factor t out of -t.
t(t+2)(t-2)t(1-t)(1+t+t2)tt3+t-14t-t3
Step 3.1.3
Factor t out of tt3+t-1.
t(t+2)(t-2)t(1-t)(1+t+t2)t(t3-1)4t-t3
t(t+2)(t-2)t(1-t)(1+t+t2)t(t3-1)4t-t3
Step 3.2
Rewrite 1 as 13.
t(t+2)(t-2)t(1-t)(1+t+t2)t(t3-13)4t-t3
Step 3.3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=t and b=1.
t(t+2)(t-2)t(1-t)(1+t+t2)t((t-1)(t2+t1+12))4t-t3
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Multiply t by 1.
t(t+2)(t-2)t(1-t)(1+t+t2)t((t-1)(t2+t+12))4t-t3
Step 3.4.2
One to any power is one.
t(t+2)(t-2)t(1-t)(1+t+t2)t((t-1)(t2+t+1))4t-t3
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)4t-t3
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)4t-t3
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
Factor t out of 4t-t3.
Tap for more steps...
Step 4.1.1
Factor t out of 4t.
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t4-t3
Step 4.1.2
Factor t out of -t3.
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t4+t(-t2)
Step 4.1.3
Factor t out of t4+t(-t2).
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t(4-t2)
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t(4-t2)
Step 4.2
Rewrite 4 as 22.
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t(22-t2)
Step 4.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=2 and b=t.
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t(2+t)(2-t)
t(t+2)(t-2)t(1-t)(1+t+t2)t(t-1)(t2+t+1)t(2+t)(2-t)
Step 5
Combine.
t(t+2)(t-2)(t(t-1)(t2+t+1))t(1-t)(1+t+t2)(t(2+t)(2-t))
Step 6
Multiply t by t by adding the exponents.
Tap for more steps...
Step 6.1
Move t.
tt(t+2)(t-2)((t-1)(t2+t+1))t(1-t)(1+t+t2)(t(2+t)(2-t))
Step 6.2
Multiply t by t.
t2(t+2)(t-2)((t-1)(t2+t+1))t(1-t)(1+t+t2)(t(2+t)(2-t))
t2(t+2)(t-2)((t-1)(t2+t+1))t(1-t)(1+t+t2)(t(2+t)(2-t))
Step 7
Multiply t by t by adding the exponents.
Tap for more steps...
Step 7.1
Move t.
t2(t+2)(t-2)((t-1)(t2+t+1))tt(1-t)(1+t+t2)((2+t)(2-t))
Step 7.2
Multiply t by t.
t2(t+2)(t-2)((t-1)(t2+t+1))t2(1-t)(1+t+t2)((2+t)(2-t))
t2(t+2)(t-2)((t-1)(t2+t+1))t2(1-t)(1+t+t2)((2+t)(2-t))
Step 8
Cancel the common factor of t2.
Tap for more steps...
Step 8.1
Cancel the common factor.
t2(t+2)(t-2)((t-1)(t2+t+1))t2(1-t)(1+t+t2)((2+t)(2-t))
Step 8.2
Rewrite the expression.
((t+2)(t-2))((t-1)(t2+t+1))((1-t)(1+t+t2))((2+t)(2-t))
((t+2)(t-2))((t-1)(t2+t+1))((1-t)(1+t+t2))((2+t)(2-t))
Step 9
Cancel the common factor of t+2 and 2+t.
Tap for more steps...
Step 9.1
Reorder terms.
((t+2)(t-2))((t-1)(t2+t+1))(1-t)(1+t+t2)((t+2)(2-t))
Step 9.2
Cancel the common factor.
(t+2)(t-2)((t-1)(t2+t+1))(1-t)(1+t+t2)((t+2)(2-t))
Step 9.3
Rewrite the expression.
(t-2)((t-1)(t2+t+1))(1-t)(1+t+t2)(2-t)
(t-2)((t-1)(t2+t+1))(1-t)(1+t+t2)(2-t)
Step 10
Cancel the common factor of t-2 and 2-t.
Tap for more steps...
Step 10.1
Factor -1 out of t.
(-1(-t)-2)((t-1)(t2+t+1))(1-t)(1+t+t2)(2-t)
Step 10.2
Rewrite -2 as -1(2).
(-1(-t)-1(2))((t-1)(t2+t+1))(1-t)(1+t+t2)(2-t)
Step 10.3
Factor -1 out of -1(-t)-1(2).
-1(-t+2)((t-1)(t2+t+1))(1-t)(1+t+t2)(2-t)
Step 10.4
Reorder terms.
-1(-t+2)((t-1)(t2+t+1))(1-t)(1+t+t2)(-t+2)
Step 10.5
Cancel the common factor.
-1(-t+2)((t-1)(t2+t+1))(1-t)(1+t+t2)(-t+2)
Step 10.6
Rewrite the expression.
-1((t-1)(t2+t+1))(1-t)(1+t+t2)
-1((t-1)(t2+t+1))(1-t)(1+t+t2)
Step 11
Cancel the common factor of t-1 and 1-t.
Tap for more steps...
Step 11.1
Factor -1 out of t.
-1((-1(-t)-1)(t2+t+1))(1-t)(1+t+t2)
Step 11.2
Rewrite -1 as -1(1).
-1((-1(-t)-1(1))(t2+t+1))(1-t)(1+t+t2)
Step 11.3
Factor -1 out of -1(-t)-1(1).
-1(-1(-t+1)(t2+t+1))(1-t)(1+t+t2)
Step 11.4
Reorder terms.
-1(-1(-t+1)(t2+t+1))(-t+1)(1+t+t2)
Step 11.5
Cancel the common factor.
-1(-1(-t+1)(t2+t+1))(-t+1)(1+t+t2)
Step 11.6
Rewrite the expression.
-1(-1(t2+t+1))1+t+t2
-1(-1(t2+t+1))1+t+t2
Step 12
Cancel the common factor of t2+t+1 and 1+t+t2.
Tap for more steps...
Step 12.1
Reorder terms.
-1(-1(t2+t+1))t2+t+1
Step 12.2
Cancel the common factor.
-1(-1(t2+t+1))t2+t+1
Step 12.3
Divide -1(-1) by 1.
-1(-1)
-1(-1)
Step 13
Simplify the expression.
Tap for more steps...
Step 13.1
Rewrite -1(-1) as -(-1).
-(-1)
Step 13.2
Multiply -1 by -1.
1
1
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]