Pre-Algebra Examples

Simplify (a-b)^3
(a-b)3(ab)3
Step 1
Use the Binomial Theorem.
a3+3a2(-b)+3a(-b)2+(-b)3a3+3a2(b)+3a(b)2+(b)3
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Rewrite using the commutative property of multiplication.
a3+3-1a2b+3a(-b)2+(-b)3a3+31a2b+3a(b)2+(b)3
Step 2.2
Multiply 33 by -11.
a3-3a2b+3a(-b)2+(-b)3a33a2b+3a(b)2+(b)3
Step 2.3
Apply the product rule to -bb.
a3-3a2b+3a((-1)2b2)+(-b)3a33a2b+3a((1)2b2)+(b)3
Step 2.4
Rewrite using the commutative property of multiplication.
a3-3a2b+3(-1)2ab2+(-b)3a33a2b+3(1)2ab2+(b)3
Step 2.5
Raise -11 to the power of 22.
a3-3a2b+31ab2+(-b)3a33a2b+31ab2+(b)3
Step 2.6
Multiply 33 by 11.
a3-3a2b+3ab2+(-b)3a33a2b+3ab2+(b)3
Step 2.7
Apply the product rule to -bb.
a3-3a2b+3ab2+(-1)3b3a33a2b+3ab2+(1)3b3
Step 2.8
Raise -11 to the power of 33.
a3-3a2b+3ab2-b3a33a2b+3ab2b3
a3-3a2b+3ab2-b3
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]