Enter a problem...
Pre-Algebra Examples
(a-b)3(a−b)3
Step 1
Use the Binomial Theorem.
a3+3a2(-b)+3a(-b)2+(-b)3a3+3a2(−b)+3a(−b)2+(−b)3
Step 2
Step 2.1
Rewrite using the commutative property of multiplication.
a3+3⋅-1a2b+3a(-b)2+(-b)3a3+3⋅−1a2b+3a(−b)2+(−b)3
Step 2.2
Multiply 33 by -1−1.
a3-3a2b+3a(-b)2+(-b)3a3−3a2b+3a(−b)2+(−b)3
Step 2.3
Apply the product rule to -b−b.
a3-3a2b+3a((-1)2b2)+(-b)3a3−3a2b+3a((−1)2b2)+(−b)3
Step 2.4
Rewrite using the commutative property of multiplication.
a3-3a2b+3⋅(-1)2ab2+(-b)3a3−3a2b+3⋅(−1)2ab2+(−b)3
Step 2.5
Raise -1−1 to the power of 22.
a3-3a2b+3⋅1ab2+(-b)3a3−3a2b+3⋅1ab2+(−b)3
Step 2.6
Multiply 33 by 11.
a3-3a2b+3ab2+(-b)3a3−3a2b+3ab2+(−b)3
Step 2.7
Apply the product rule to -b−b.
a3-3a2b+3ab2+(-1)3b3a3−3a2b+3ab2+(−1)3b3
Step 2.8
Raise -1−1 to the power of 33.
a3-3a2b+3ab2-b3a3−3a2b+3ab2−b3
a3-3a2b+3ab2-b3