Pre-Algebra Examples

Solve for x 2^(2x)-2^(x-1)-2^2+2<0
22x-2x-1-22+2<022x2x122+2<0
Step 1
Rewrite 2x-1 as 2x2-1.
22x-(2x2-1)-22+2=0
Step 2
Rewrite 22x as exponentiation.
(2x)2-(2x2-1)-22+2=0
Step 3
Remove parentheses.
(2x)2-2x2-1-22+2=0
Step 4
Substitute u for 2x.
u2-u2-1-22+2=0
Step 5
Simplify each term.
Tap for more steps...
Step 5.1
Rewrite the expression using the negative exponent rule b-n=1bn.
u2-u12-22+2=0
Step 5.2
Combine 12 and u.
u2-u2-22+2=0
Step 5.3
Raise 2 to the power of 2.
u2-u2-14+2=0
Step 5.4
Multiply -1 by 4.
u2-u2-4+2=0
u2-u2-4+2=0
Step 6
Add -4 and 2.
u2-u2-2=0
Step 7
Solve for u.
Tap for more steps...
Step 7.1
Multiply through by the least common denominator 2, then simplify.
Tap for more steps...
Step 7.1.1
Apply the distributive property.
2u2+2(-u2)+2-2=0
Step 7.1.2
Simplify.
Tap for more steps...
Step 7.1.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 7.1.2.1.1
Move the leading negative in -u2 into the numerator.
2u2+2(-u2)+2-2=0
Step 7.1.2.1.2
Cancel the common factor.
2u2+2(-u2)+2-2=0
Step 7.1.2.1.3
Rewrite the expression.
2u2-u+2-2=0
2u2-u+2-2=0
Step 7.1.2.2
Multiply 2 by -2.
2u2-u-4=0
2u2-u-4=0
2u2-u-4=0
Step 7.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 7.3
Substitute the values a=2, b=-1, and c=-4 into the quadratic formula and solve for u.
1±(-1)2-4(2-4)22
Step 7.4
Simplify.
Tap for more steps...
Step 7.4.1
Simplify the numerator.
Tap for more steps...
Step 7.4.1.1
Raise -1 to the power of 2.
u=1±1-42-422
Step 7.4.1.2
Multiply -42-4.
Tap for more steps...
Step 7.4.1.2.1
Multiply -4 by 2.
u=1±1-8-422
Step 7.4.1.2.2
Multiply -8 by -4.
u=1±1+3222
u=1±1+3222
Step 7.4.1.3
Add 1 and 32.
u=1±3322
u=1±3322
Step 7.4.2
Multiply 2 by 2.
u=1±334
u=1±334
Step 7.5
The final answer is the combination of both solutions.
u=1+334,1-334
u=1+334,1-334
Step 8
Substitute 1+334 for u in u=2x.
1+334=2x
Step 9
Solve 1+334=2x.
Tap for more steps...
Step 9.1
Rewrite the equation as 2x=1+334.
2x=1+334
Step 9.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(1+334)
Step 9.3
Expand ln(2x) by moving x outside the logarithm.
xln(2)=ln(1+334)
Step 9.4
Divide each term in xln(2)=ln(1+334) by ln(2) and simplify.
Tap for more steps...
Step 9.4.1
Divide each term in xln(2)=ln(1+334) by ln(2).
xln(2)ln(2)=ln(1+334)ln(2)
Step 9.4.2
Simplify the left side.
Tap for more steps...
Step 9.4.2.1
Cancel the common factor of ln(2).
Tap for more steps...
Step 9.4.2.1.1
Cancel the common factor.
xln(2)ln(2)=ln(1+334)ln(2)
Step 9.4.2.1.2
Divide x by 1.
x=ln(1+334)ln(2)
x=ln(1+334)ln(2)
x=ln(1+334)ln(2)
x=ln(1+334)ln(2)
x=ln(1+334)ln(2)
Step 10
Substitute 1-334 for u in u=2x.
1-334=2x
Step 11
Solve 1-334=2x.
Tap for more steps...
Step 11.1
Rewrite the equation as 2x=1-334.
2x=1-334
Step 11.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(1-334)
Step 11.3
The equation cannot be solved because ln(1-334) is undefined.
Undefined
Step 11.4
There is no solution for 2x=1-334
No solution
No solution
Step 12
List the solutions that makes the equation true.
x=ln(1+334)ln(2)
Step 13
The solution consists of all of the true intervals.
x<ln(1+334)ln(2)
Step 14
The result can be shown in multiple forms.
Inequality Form:
x<ln(1+334)ln(2)
Interval Notation:
(-,ln(1+334)ln(2))
Step 15
 [x2  12  π  xdx ]