Enter a problem...
Pre-Algebra Examples
22x-2x-1-22+2<022x−2x−1−22+2<0
Step 1
Rewrite 2x-1 as 2x⋅2-1.
22x-(2x⋅2-1)-22+2=0
Step 2
Rewrite 22x as exponentiation.
(2x)2-(2x⋅2-1)-22+2=0
Step 3
Remove parentheses.
(2x)2-2x⋅2-1-22+2=0
Step 4
Substitute u for 2x.
u2-u⋅2-1-22+2=0
Step 5
Step 5.1
Rewrite the expression using the negative exponent rule b-n=1bn.
u2-u⋅12-22+2=0
Step 5.2
Combine 12 and u.
u2-u2-22+2=0
Step 5.3
Raise 2 to the power of 2.
u2-u2-1⋅4+2=0
Step 5.4
Multiply -1 by 4.
u2-u2-4+2=0
u2-u2-4+2=0
Step 6
Add -4 and 2.
u2-u2-2=0
Step 7
Step 7.1
Multiply through by the least common denominator 2, then simplify.
Step 7.1.1
Apply the distributive property.
2u2+2(-u2)+2⋅-2=0
Step 7.1.2
Simplify.
Step 7.1.2.1
Cancel the common factor of 2.
Step 7.1.2.1.1
Move the leading negative in -u2 into the numerator.
2u2+2(-u2)+2⋅-2=0
Step 7.1.2.1.2
Cancel the common factor.
2u2+2(-u2)+2⋅-2=0
Step 7.1.2.1.3
Rewrite the expression.
2u2-u+2⋅-2=0
2u2-u+2⋅-2=0
Step 7.1.2.2
Multiply 2 by -2.
2u2-u-4=0
2u2-u-4=0
2u2-u-4=0
Step 7.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 7.3
Substitute the values a=2, b=-1, and c=-4 into the quadratic formula and solve for u.
1±√(-1)2-4⋅(2⋅-4)2⋅2
Step 7.4
Simplify.
Step 7.4.1
Simplify the numerator.
Step 7.4.1.1
Raise -1 to the power of 2.
u=1±√1-4⋅2⋅-42⋅2
Step 7.4.1.2
Multiply -4⋅2⋅-4.
Step 7.4.1.2.1
Multiply -4 by 2.
u=1±√1-8⋅-42⋅2
Step 7.4.1.2.2
Multiply -8 by -4.
u=1±√1+322⋅2
u=1±√1+322⋅2
Step 7.4.1.3
Add 1 and 32.
u=1±√332⋅2
u=1±√332⋅2
Step 7.4.2
Multiply 2 by 2.
u=1±√334
u=1±√334
Step 7.5
The final answer is the combination of both solutions.
u=1+√334,1-√334
u=1+√334,1-√334
Step 8
Substitute 1+√334 for u in u=2x.
1+√334=2x
Step 9
Step 9.1
Rewrite the equation as 2x=1+√334.
2x=1+√334
Step 9.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(1+√334)
Step 9.3
Expand ln(2x) by moving x outside the logarithm.
xln(2)=ln(1+√334)
Step 9.4
Divide each term in xln(2)=ln(1+√334) by ln(2) and simplify.
Step 9.4.1
Divide each term in xln(2)=ln(1+√334) by ln(2).
xln(2)ln(2)=ln(1+√334)ln(2)
Step 9.4.2
Simplify the left side.
Step 9.4.2.1
Cancel the common factor of ln(2).
Step 9.4.2.1.1
Cancel the common factor.
xln(2)ln(2)=ln(1+√334)ln(2)
Step 9.4.2.1.2
Divide x by 1.
x=ln(1+√334)ln(2)
x=ln(1+√334)ln(2)
x=ln(1+√334)ln(2)
x=ln(1+√334)ln(2)
x=ln(1+√334)ln(2)
Step 10
Substitute 1-√334 for u in u=2x.
1-√334=2x
Step 11
Step 11.1
Rewrite the equation as 2x=1-√334.
2x=1-√334
Step 11.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(1-√334)
Step 11.3
The equation cannot be solved because ln(1-√334) is undefined.
Undefined
Step 11.4
There is no solution for 2x=1-√334
No solution
No solution
Step 12
List the solutions that makes the equation true.
x=ln(1+√334)ln(2)
Step 13
The solution consists of all of the true intervals.
x<ln(1+√334)ln(2)
Step 14
The result can be shown in multiple forms.
Inequality Form:
x<ln(1+√334)ln(2)
Interval Notation:
(-∞,ln(1+√334)ln(2))
Step 15