Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Rewrite the division as a fraction.
Step 1.2
Multiply the numerator and denominator of the fraction by .
Step 1.2.1
Multiply by .
Step 1.2.2
Combine.
Step 1.3
Apply the distributive property.
Step 1.4
Simplify by cancelling.
Step 1.4.1
Cancel the common factor of .
Step 1.4.1.1
Factor out of .
Step 1.4.1.2
Cancel the common factor.
Step 1.4.1.3
Rewrite the expression.
Step 1.4.2
Cancel the common factor of .
Step 1.4.2.1
Move the leading negative in into the numerator.
Step 1.4.2.2
Factor out of .
Step 1.4.2.3
Cancel the common factor.
Step 1.4.2.4
Rewrite the expression.
Step 1.4.3
Cancel the common factor of .
Step 1.4.3.1
Factor out of .
Step 1.4.3.2
Cancel the common factor.
Step 1.4.3.3
Rewrite the expression.
Step 1.4.4
Multiply by by adding the exponents.
Step 1.4.4.1
Move .
Step 1.4.4.2
Use the power rule to combine exponents.
Step 1.4.4.3
Add and .
Step 1.4.5
Cancel the common factor of .
Step 1.4.5.1
Factor out of .
Step 1.4.5.2
Cancel the common factor.
Step 1.4.5.3
Rewrite the expression.
Step 1.5
Simplify the numerator.
Step 1.5.1
Factor out of .
Step 1.5.1.1
Factor out of .
Step 1.5.1.2
Factor out of .
Step 1.5.1.3
Factor out of .
Step 1.5.2
Factor out of .
Step 1.5.2.1
Factor out of .
Step 1.5.2.2
Factor out of .
Step 1.5.2.3
Factor out of .
Step 1.5.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.5.4
Combine exponents.
Step 1.5.4.1
Raise to the power of .
Step 1.5.4.2
Raise to the power of .
Step 1.5.4.3
Use the power rule to combine exponents.
Step 1.5.4.4
Add and .
Step 1.5.5
Simplify each term.
Step 1.5.5.1
Apply the distributive property.
Step 1.5.5.2
Rewrite using the commutative property of multiplication.
Step 1.5.5.3
Multiply by by adding the exponents.
Step 1.5.5.3.1
Move .
Step 1.5.5.3.2
Multiply by .
Step 1.5.5.3.2.1
Raise to the power of .
Step 1.5.5.3.2.2
Use the power rule to combine exponents.
Step 1.5.5.3.3
Add and .
Step 1.5.5.4
Apply the distributive property.
Step 1.5.5.5
Rewrite using the commutative property of multiplication.
Step 1.5.5.6
Rewrite using the commutative property of multiplication.
Step 1.5.5.7
Simplify each term.
Step 1.5.5.7.1
Multiply by by adding the exponents.
Step 1.5.5.7.1.1
Move .
Step 1.5.5.7.1.2
Multiply by .
Step 1.5.5.7.1.2.1
Raise to the power of .
Step 1.5.5.7.1.2.2
Use the power rule to combine exponents.
Step 1.5.5.7.1.3
Add and .
Step 1.5.5.7.2
Multiply by by adding the exponents.
Step 1.5.5.7.2.1
Move .
Step 1.5.5.7.2.2
Multiply by .
Step 1.6
Simplify the denominator.
Step 1.6.1
Factor out of .
Step 1.6.1.1
Factor out of .
Step 1.6.1.2
Factor out of .
Step 1.6.1.3
Factor out of .
Step 1.6.2
Factor out of .
Step 1.6.2.1
Factor out of .
Step 1.6.2.2
Factor out of .
Step 1.6.2.3
Factor out of .
Step 1.6.3
Apply the distributive property.
Step 1.6.4
Multiply by by adding the exponents.
Step 1.6.4.1
Multiply by .
Step 1.6.4.1.1
Raise to the power of .
Step 1.6.4.1.2
Use the power rule to combine exponents.
Step 1.6.4.2
Add and .
Step 1.6.5
Apply the distributive property.
Step 1.6.6
Rewrite using the commutative property of multiplication.
Step 1.6.7
Multiply by by adding the exponents.
Step 1.6.7.1
Move .
Step 1.6.7.2
Use the power rule to combine exponents.
Step 1.6.7.3
Add and .
Step 1.6.8
Subtract from .
Step 1.6.9
Add and .
Step 1.7
Reduce the expression by cancelling the common factors.
Step 1.7.1
Cancel the common factor of .
Step 1.7.1.1
Cancel the common factor.
Step 1.7.1.2
Rewrite the expression.
Step 1.7.2
Cancel the common factor of and .
Step 1.7.2.1
Factor out of .
Step 1.7.2.2
Cancel the common factors.
Step 1.7.2.2.1
Cancel the common factor.
Step 1.7.2.2.2
Rewrite the expression.
Step 1.7.3
Reorder factors in .
Step 2
The degree cannot be determined because is not a polynomial.
Not a polynomial