Pre-Algebra Examples

Factor 1/4x^4+3/4x^8-5/4x^6+1/4x
Step 1
Factor out of .
Tap for more steps...
Step 1.1
Factor out of .
Step 1.2
Factor out of .
Step 1.3
Factor out of .
Step 1.4
Factor out of .
Step 1.5
Factor out of .
Step 1.6
Factor out of .
Step 1.7
Factor out of .
Step 2
Combine and .
Step 3
Combine and .
Step 4
Combine and .
Step 5
Move to the left of .
Step 6
Multiply by .
Step 7
Reorder terms.
Step 8
Factor.
Tap for more steps...
Step 8.1
Rewrite in a factored form.
Tap for more steps...
Step 8.1.1
Regroup terms.
Step 8.1.2
Factor out of each term.
Step 8.1.3
Factor out of each term.
Step 8.1.4
Remove parentheses.
Step 8.1.5
Factor out of .
Step 8.1.6
Multiply by .
Step 8.1.7
Factor.
Tap for more steps...
Step 8.1.7.1
Factor using the rational roots test.
Tap for more steps...
Step 8.1.7.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 8.1.7.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 8.1.7.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 8.1.7.1.3.1
Substitute into the polynomial.
Step 8.1.7.1.3.2
Raise to the power of .
Step 8.1.7.1.3.3
Multiply by .
Step 8.1.7.1.3.4
Raise to the power of .
Step 8.1.7.1.3.5
Multiply by .
Step 8.1.7.1.3.6
Subtract from .
Step 8.1.7.1.3.7
Raise to the power of .
Step 8.1.7.1.3.8
Add and .
Step 8.1.7.1.3.9
Add and .
Step 8.1.7.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 8.1.7.1.5
Divide by .
Tap for more steps...
Step 8.1.7.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+-+++++
Step 8.1.7.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
-+-+++++
Step 8.1.7.1.5.3
Multiply the new quotient term by the divisor.
-+-+++++
+-
Step 8.1.7.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
-+-+++++
-+
Step 8.1.7.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-+++++
-+
+
Step 8.1.7.1.5.6
Pull the next terms from the original dividend down into the current dividend.
-+-+++++
-+
+-
Step 8.1.7.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
+
-+-+++++
-+
+-
Step 8.1.7.1.5.8
Multiply the new quotient term by the divisor.
+
-+-+++++
-+
+-
+-
Step 8.1.7.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
+
-+-+++++
-+
+-
-+
Step 8.1.7.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-+-+++++
-+
+-
-+
-
Step 8.1.7.1.5.11
Pull the next terms from the original dividend down into the current dividend.
+
-+-+++++
-+
+-
-+
-+
Step 8.1.7.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
+-
-+-+++++
-+
+-
-+
-+
Step 8.1.7.1.5.13
Multiply the new quotient term by the divisor.
+-
-+-+++++
-+
+-
-+
-+
-+
Step 8.1.7.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
+-
-+-+++++
-+
+-
-+
-+
+-
Step 8.1.7.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
-+-+++++
-+
+-
-+
-+
+-
-
Step 8.1.7.1.5.16
Pull the next terms from the original dividend down into the current dividend.
+-
-+-+++++
-+
+-
-+
-+
+-
-+
Step 8.1.7.1.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
+--
-+-+++++
-+
+-
-+
-+
+-
-+
Step 8.1.7.1.5.18
Multiply the new quotient term by the divisor.
+--
-+-+++++
-+
+-
-+
-+
+-
-+
-+
Step 8.1.7.1.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
+--
-+-+++++
-+
+-
-+
-+
+-
-+
+-
Step 8.1.7.1.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+--
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-
Step 8.1.7.1.5.21
Pull the next terms from the original dividend down into the current dividend.
+--
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
Step 8.1.7.1.5.22
Divide the highest order term in the dividend by the highest order term in divisor .
+---
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
Step 8.1.7.1.5.23
Multiply the new quotient term by the divisor.
+---
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
-+
Step 8.1.7.1.5.24
The expression needs to be subtracted from the dividend, so change all the signs in
+---
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
Step 8.1.7.1.5.25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+---
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-
Step 8.1.7.1.5.26
Pull the next terms from the original dividend down into the current dividend.
+---
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
Step 8.1.7.1.5.27
Divide the highest order term in the dividend by the highest order term in divisor .
+----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
Step 8.1.7.1.5.28
Multiply the new quotient term by the divisor.
+----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
-+
Step 8.1.7.1.5.29
The expression needs to be subtracted from the dividend, so change all the signs in
+----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
Step 8.1.7.1.5.30
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
-
Step 8.1.7.1.5.31
Pull the next terms from the original dividend down into the current dividend.
+----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
-+
Step 8.1.7.1.5.32
Divide the highest order term in the dividend by the highest order term in divisor .
+-----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
-+
Step 8.1.7.1.5.33
Multiply the new quotient term by the divisor.
+-----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
-+
-+
Step 8.1.7.1.5.34
The expression needs to be subtracted from the dividend, so change all the signs in
+-----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
-+
+-
Step 8.1.7.1.5.35
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-----
-+-+++++
-+
+-
-+
-+
+-
-+
+-
-+
+-
-+
+-
-+
+-
Step 8.1.7.1.5.36
Since the remander is , the final answer is the quotient.
Step 8.1.7.1.6
Write as a set of factors.
Step 8.1.7.2
Remove unnecessary parentheses.
Step 8.2
Remove unnecessary parentheses.
Step 9
Combine and .