Pre-Algebra Examples

Divide (2x^3-31x+35-x^2)÷(2x-7)
Step 1
Rewrite the division as a fraction.
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Reorder terms.
Step 2.2
Factor using the rational roots test.
Tap for more steps...
Step 2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 2.2.3.1
Substitute into the polynomial.
Step 2.2.3.2
Raise to the power of .
Step 2.2.3.3
Multiply by .
Step 2.2.3.4
Raise to the power of .
Step 2.2.3.5
Multiply by .
Step 2.2.3.6
Subtract from .
Step 2.2.3.7
Multiply by .
Step 2.2.3.8
Subtract from .
Step 2.2.3.9
Add and .
Step 2.2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.2.5
Divide by .
Tap for more steps...
Step 2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
---+
Step 2.2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
---+
Step 2.2.5.3
Multiply the new quotient term by the divisor.
---+
+-
Step 2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
---+
-+
Step 2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
---+
-+
+
Step 2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
---+
-+
+-
Step 2.2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
+
---+
-+
+-
Step 2.2.5.8
Multiply the new quotient term by the divisor.
+
---+
-+
+-
+-
Step 2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
+
---+
-+
+-
-+
Step 2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
---+
-+
+-
-+
-
Step 2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
+
---+
-+
+-
-+
-+
Step 2.2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
+-
---+
-+
+-
-+
-+
Step 2.2.5.13
Multiply the new quotient term by the divisor.
+-
---+
-+
+-
-+
-+
-+
Step 2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
+-
---+
-+
+-
-+
-+
+-
Step 2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
---+
-+
+-
-+
-+
+-
Step 2.2.5.16
Since the remander is , the final answer is the quotient.
Step 2.2.6
Write as a set of factors.
Step 3
Cancel the common factor of .
Tap for more steps...
Step 3.1
Cancel the common factor.
Step 3.2
Divide by .