Pre-Algebra Examples

Add (8a-18)/(3a^2+14a+8)+7/(3a+2)
8a-183a2+14a+8+73a+28a183a2+14a+8+73a+2
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Factor 22 out of 8a-188a18.
Tap for more steps...
Step 1.1.1
Factor 22 out of 8a8a.
2(4a)-183a2+14a+8+73a+22(4a)183a2+14a+8+73a+2
Step 1.1.2
Factor 22 out of -1818.
2(4a)+2(-9)3a2+14a+8+73a+22(4a)+2(9)3a2+14a+8+73a+2
Step 1.1.3
Factor 22 out of 2(4a)+2(-9)2(4a)+2(9).
2(4a-9)3a2+14a+8+73a+22(4a9)3a2+14a+8+73a+2
2(4a-9)3a2+14a+8+73a+22(4a9)3a2+14a+8+73a+2
Step 1.2
Factor by grouping.
Tap for more steps...
Step 1.2.1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=38=24ac=38=24 and whose sum is b=14b=14.
Tap for more steps...
Step 1.2.1.1
Factor 1414 out of 14a14a.
2(4a-9)3a2+14(a)+8+73a+22(4a9)3a2+14(a)+8+73a+2
Step 1.2.1.2
Rewrite 1414 as 22 plus 1212
2(4a-9)3a2+(2+12)a+8+73a+22(4a9)3a2+(2+12)a+8+73a+2
Step 1.2.1.3
Apply the distributive property.
2(4a-9)3a2+2a+12a+8+73a+22(4a9)3a2+2a+12a+8+73a+2
2(4a-9)3a2+2a+12a+8+73a+22(4a9)3a2+2a+12a+8+73a+2
Step 1.2.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.2.2.1
Group the first two terms and the last two terms.
2(4a-9)(3a2+2a)+12a+8+73a+22(4a9)(3a2+2a)+12a+8+73a+2
Step 1.2.2.2
Factor out the greatest common factor (GCF) from each group.
2(4a-9)a(3a+2)+4(3a+2)+73a+22(4a9)a(3a+2)+4(3a+2)+73a+2
2(4a-9)a(3a+2)+4(3a+2)+73a+2
Step 1.2.3
Factor the polynomial by factoring out the greatest common factor, 3a+2.
2(4a-9)(3a+2)(a+4)+73a+2
2(4a-9)(3a+2)(a+4)+73a+2
2(4a-9)(3a+2)(a+4)+73a+2
Step 2
To write 73a+2 as a fraction with a common denominator, multiply by a+4a+4.
2(4a-9)(3a+2)(a+4)+73a+2a+4a+4
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Multiply 73a+2 by a+4a+4.
2(4a-9)(3a+2)(a+4)+7(a+4)(3a+2)(a+4)
Step 3.2
Combine the numerators over the common denominator.
2(4a-9)+7(a+4)(3a+2)(a+4)
2(4a-9)+7(a+4)(3a+2)(a+4)
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Apply the distributive property.
2(4a)+2-9+7(a+4)(3a+2)(a+4)
Step 4.2
Multiply 4 by 2.
8a+2-9+7(a+4)(3a+2)(a+4)
Step 4.3
Multiply 2 by -9.
8a-18+7(a+4)(3a+2)(a+4)
Step 4.4
Apply the distributive property.
8a-18+7a+74(3a+2)(a+4)
Step 4.5
Multiply 7 by 4.
8a-18+7a+28(3a+2)(a+4)
Step 4.6
Add 8a and 7a.
15a-18+28(3a+2)(a+4)
Step 4.7
Add -18 and 28.
15a+10(3a+2)(a+4)
Step 4.8
Factor 5 out of 15a+10.
Tap for more steps...
Step 4.8.1
Factor 5 out of 15a.
5(3a)+10(3a+2)(a+4)
Step 4.8.2
Factor 5 out of 10.
5(3a)+5(2)(3a+2)(a+4)
Step 4.8.3
Factor 5 out of 5(3a)+5(2).
5(3a+2)(3a+2)(a+4)
5(3a+2)(3a+2)(a+4)
5(3a+2)(3a+2)(a+4)
Step 5
Cancel the common factor of 3a+2.
Tap for more steps...
Step 5.1
Cancel the common factor.
5(3a+2)(3a+2)(a+4)
Step 5.2
Rewrite the expression.
5a+4
5a+4
 [x2  12  π  xdx ]