Pre-Algebra Examples

Add (3y^2-19y)/(y^2-25)+(y^2-y)/(y^2-25)
3y2-19yy2-25+y2-yy2-253y219yy225+y2yy225
Step 1
Simplify terms.
Tap for more steps...
Step 1.1
Combine the numerators over the common denominator.
3y2-19y+y2-yy2-253y219y+y2yy225
Step 1.2
Add 3y23y2 and y2y2.
4y2-19y-yy2-254y219yyy225
Step 1.3
Subtract yy from -19y19y.
4y2-20yy2-254y220yy225
Step 1.4
Factor 4y4y out of 4y2-20y4y220y.
Tap for more steps...
Step 1.4.1
Factor 4y4y out of 4y24y2.
4y(y)-20yy2-254y(y)20yy225
Step 1.4.2
Factor 4y4y out of -20y20y.
4y(y)+4y(-5)y2-254y(y)+4y(5)y225
Step 1.4.3
Factor 4y4y out of 4y(y)+4y(-5)4y(y)+4y(5).
4y(y-5)y2-254y(y5)y225
4y(y-5)y2-254y(y5)y225
4y(y-5)y2-254y(y5)y225
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Rewrite 2525 as 5252.
4y(y-5)y2-524y(y5)y252
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=ya=y and b=5b=5.
4y(y-5)(y+5)(y-5)4y(y5)(y+5)(y5)
4y(y-5)(y+5)(y-5)4y(y5)(y+5)(y5)
Step 3
Cancel the common factor of y-5y5.
Tap for more steps...
Step 3.1
Cancel the common factor.
4y(y-5)(y+5)(y-5)
Step 3.2
Rewrite the expression.
4yy+5
4yy+5
 [x2  12  π  xdx ]