Pre-Algebra Examples

Add (9y+2)/(3y^2-2y-8)+7/(3y^2+y-4)
9y+23y2-2y-8+73y2+y-49y+23y22y8+73y2+y4
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Factor by grouping.
Tap for more steps...
Step 1.1.1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=3-8=-24ac=38=24 and whose sum is b=-2b=2.
Tap for more steps...
Step 1.1.1.1
Factor -22 out of -2y2y.
9y+23y2-2(y)-8+73y2+y-49y+23y22(y)8+73y2+y4
Step 1.1.1.2
Rewrite -22 as 44 plus -66
9y+23y2+(4-6)y-8+73y2+y-49y+23y2+(46)y8+73y2+y4
Step 1.1.1.3
Apply the distributive property.
9y+23y2+4y-6y-8+73y2+y-49y+23y2+4y6y8+73y2+y4
9y+23y2+4y-6y-8+73y2+y-49y+23y2+4y6y8+73y2+y4
Step 1.1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.1.2.1
Group the first two terms and the last two terms.
9y+2(3y2+4y)-6y-8+73y2+y-4
Step 1.1.2.2
Factor out the greatest common factor (GCF) from each group.
9y+2y(3y+4)-2(3y+4)+73y2+y-4
9y+2y(3y+4)-2(3y+4)+73y2+y-4
Step 1.1.3
Factor the polynomial by factoring out the greatest common factor, 3y+4.
9y+2(3y+4)(y-2)+73y2+y-4
9y+2(3y+4)(y-2)+73y2+y-4
Step 1.2
Factor by grouping.
Tap for more steps...
Step 1.2.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=3-4=-12 and whose sum is b=1.
Tap for more steps...
Step 1.2.1.1
Multiply by 1.
9y+2(3y+4)(y-2)+73y2+1y-4
Step 1.2.1.2
Rewrite 1 as -3 plus 4
9y+2(3y+4)(y-2)+73y2+(-3+4)y-4
Step 1.2.1.3
Apply the distributive property.
9y+2(3y+4)(y-2)+73y2-3y+4y-4
9y+2(3y+4)(y-2)+73y2-3y+4y-4
Step 1.2.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.2.2.1
Group the first two terms and the last two terms.
9y+2(3y+4)(y-2)+7(3y2-3y)+4y-4
Step 1.2.2.2
Factor out the greatest common factor (GCF) from each group.
9y+2(3y+4)(y-2)+73y(y-1)+4(y-1)
9y+2(3y+4)(y-2)+73y(y-1)+4(y-1)
Step 1.2.3
Factor the polynomial by factoring out the greatest common factor, y-1.
9y+2(3y+4)(y-2)+7(y-1)(3y+4)
9y+2(3y+4)(y-2)+7(y-1)(3y+4)
9y+2(3y+4)(y-2)+7(y-1)(3y+4)
Step 2
To write 9y+2(3y+4)(y-2) as a fraction with a common denominator, multiply by y-1y-1.
9y+2(3y+4)(y-2)y-1y-1+7(y-1)(3y+4)
Step 3
To write 7(y-1)(3y+4) as a fraction with a common denominator, multiply by y-2y-2.
9y+2(3y+4)(y-2)y-1y-1+7(y-1)(3y+4)y-2y-2
Step 4
Write each expression with a common denominator of (3y+4)(y-2)(y-1), by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 4.1
Multiply 9y+2(3y+4)(y-2) by y-1y-1.
(9y+2)(y-1)(3y+4)(y-2)(y-1)+7(y-1)(3y+4)y-2y-2
Step 4.2
Multiply 7(y-1)(3y+4) by y-2y-2.
(9y+2)(y-1)(3y+4)(y-2)(y-1)+7(y-2)(y-1)(3y+4)(y-2)
Step 4.3
Reorder the factors of (3y+4)(y-2)(y-1).
(9y+2)(y-1)(3y+4)(y-1)(y-2)+7(y-2)(y-1)(3y+4)(y-2)
Step 4.4
Reorder the factors of (y-1)(3y+4)(y-2).
(9y+2)(y-1)(3y+4)(y-1)(y-2)+7(y-2)(3y+4)(y-1)(y-2)
(9y+2)(y-1)(3y+4)(y-1)(y-2)+7(y-2)(3y+4)(y-1)(y-2)
Step 5
Combine the numerators over the common denominator.
(9y+2)(y-1)+7(y-2)(3y+4)(y-1)(y-2)
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Expand (9y+2)(y-1) using the FOIL Method.
Tap for more steps...
Step 6.1.1
Apply the distributive property.
9y(y-1)+2(y-1)+7(y-2)(3y+4)(y-1)(y-2)
Step 6.1.2
Apply the distributive property.
9yy+9y-1+2(y-1)+7(y-2)(3y+4)(y-1)(y-2)
Step 6.1.3
Apply the distributive property.
9yy+9y-1+2y+2-1+7(y-2)(3y+4)(y-1)(y-2)
9yy+9y-1+2y+2-1+7(y-2)(3y+4)(y-1)(y-2)
Step 6.2
Simplify and combine like terms.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply y by y by adding the exponents.
Tap for more steps...
Step 6.2.1.1.1
Move y.
9(yy)+9y-1+2y+2-1+7(y-2)(3y+4)(y-1)(y-2)
Step 6.2.1.1.2
Multiply y by y.
9y2+9y-1+2y+2-1+7(y-2)(3y+4)(y-1)(y-2)
9y2+9y-1+2y+2-1+7(y-2)(3y+4)(y-1)(y-2)
Step 6.2.1.2
Multiply -1 by 9.
9y2-9y+2y+2-1+7(y-2)(3y+4)(y-1)(y-2)
Step 6.2.1.3
Multiply 2 by -1.
9y2-9y+2y-2+7(y-2)(3y+4)(y-1)(y-2)
9y2-9y+2y-2+7(y-2)(3y+4)(y-1)(y-2)
Step 6.2.2
Add -9y and 2y.
9y2-7y-2+7(y-2)(3y+4)(y-1)(y-2)
9y2-7y-2+7(y-2)(3y+4)(y-1)(y-2)
Step 6.3
Apply the distributive property.
9y2-7y-2+7y+7-2(3y+4)(y-1)(y-2)
Step 6.4
Multiply 7 by -2.
9y2-7y-2+7y-14(3y+4)(y-1)(y-2)
Step 6.5
Add -7y and 7y.
9y2+0-2-14(3y+4)(y-1)(y-2)
Step 6.6
Add 9y2 and 0.
9y2-2-14(3y+4)(y-1)(y-2)
Step 6.7
Subtract 14 from -2.
9y2-16(3y+4)(y-1)(y-2)
Step 6.8
Rewrite 9y2-16 in a factored form.
Tap for more steps...
Step 6.8.1
Rewrite 9y2 as (3y)2.
(3y)2-16(3y+4)(y-1)(y-2)
Step 6.8.2
Rewrite 16 as 42.
(3y)2-42(3y+4)(y-1)(y-2)
Step 6.8.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=3y and b=4.
(3y+4)(3y-4)(3y+4)(y-1)(y-2)
(3y+4)(3y-4)(3y+4)(y-1)(y-2)
(3y+4)(3y-4)(3y+4)(y-1)(y-2)
Step 7
Cancel the common factor of 3y+4.
Tap for more steps...
Step 7.1
Cancel the common factor.
(3y+4)(3y-4)(3y+4)(y-1)(y-2)
Step 7.2
Rewrite the expression.
3y-4(y-1)(y-2)
3y-4(y-1)(y-2)
 [x2  12  π  xdx ]