Enter a problem...
Pre-Algebra Examples
x2+6x-1=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2
Substitute the values a=1, b=6, and c=-1 into the quadratic formula and solve for x.
-6±√62-4⋅(1⋅-1)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise 6 to the power of 2.
x=-6±√36-4⋅1⋅-12⋅1
Step 3.1.2
Multiply -4⋅1⋅-1.
Step 3.1.2.1
Multiply -4 by 1.
x=-6±√36-4⋅-12⋅1
Step 3.1.2.2
Multiply -4 by -1.
x=-6±√36+42⋅1
x=-6±√36+42⋅1
Step 3.1.3
Add 36 and 4.
x=-6±√402⋅1
Step 3.1.4
Rewrite 40 as 22⋅10.
Step 3.1.4.1
Factor 4 out of 40.
x=-6±√4(10)2⋅1
Step 3.1.4.2
Rewrite 4 as 22.
x=-6±√22⋅102⋅1
x=-6±√22⋅102⋅1
Step 3.1.5
Pull terms out from under the radical.
x=-6±2√102⋅1
x=-6±2√102⋅1
Step 3.2
Multiply 2 by 1.
x=-6±2√102
Step 3.3
Simplify -6±2√102.
x=-3±√10
x=-3±√10
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 6 to the power of 2.
x=-6±√36-4⋅1⋅-12⋅1
Step 4.1.2
Multiply -4⋅1⋅-1.
Step 4.1.2.1
Multiply -4 by 1.
x=-6±√36-4⋅-12⋅1
Step 4.1.2.2
Multiply -4 by -1.
x=-6±√36+42⋅1
x=-6±√36+42⋅1
Step 4.1.3
Add 36 and 4.
x=-6±√402⋅1
Step 4.1.4
Rewrite 40 as 22⋅10.
Step 4.1.4.1
Factor 4 out of 40.
x=-6±√4(10)2⋅1
Step 4.1.4.2
Rewrite 4 as 22.
x=-6±√22⋅102⋅1
x=-6±√22⋅102⋅1
Step 4.1.5
Pull terms out from under the radical.
x=-6±2√102⋅1
x=-6±2√102⋅1
Step 4.2
Multiply 2 by 1.
x=-6±2√102
Step 4.3
Simplify -6±2√102.
x=-3±√10
Step 4.4
Change the ± to +.
x=-3+√10
x=-3+√10
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise 6 to the power of 2.
x=-6±√36-4⋅1⋅-12⋅1
Step 5.1.2
Multiply -4⋅1⋅-1.
Step 5.1.2.1
Multiply -4 by 1.
x=-6±√36-4⋅-12⋅1
Step 5.1.2.2
Multiply -4 by -1.
x=-6±√36+42⋅1
x=-6±√36+42⋅1
Step 5.1.3
Add 36 and 4.
x=-6±√402⋅1
Step 5.1.4
Rewrite 40 as 22⋅10.
Step 5.1.4.1
Factor 4 out of 40.
x=-6±√4(10)2⋅1
Step 5.1.4.2
Rewrite 4 as 22.
x=-6±√22⋅102⋅1
x=-6±√22⋅102⋅1
Step 5.1.5
Pull terms out from under the radical.
x=-6±2√102⋅1
x=-6±2√102⋅1
Step 5.2
Multiply 2 by 1.
x=-6±2√102
Step 5.3
Simplify -6±2√102.
x=-3±√10
Step 5.4
Change the ± to -.
x=-3-√10
x=-3-√10
Step 6
The final answer is the combination of both solutions.
x=-3+√10,-3-√10
Step 7
The result can be shown in multiple forms.
Exact Form:
x=-3+√10,-3-√10
Decimal Form:
x=0.16227766…,-6.16227766…