Pre-Algebra Examples

Add 1/(1+x)+(1-x)/x
11+x+1-xx
Step 1
To write 11+x as a fraction with a common denominator, multiply by xx.
11+xxx+1-xx
Step 2
To write 1-xx as a fraction with a common denominator, multiply by 1+x1+x.
11+xxx+1-xx1+x1+x
Step 3
Write each expression with a common denominator of (1+x)x, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.1
Multiply 11+x by xx.
x(1+x)x+1-xx1+x1+x
Step 3.2
Multiply 1-xx by 1+x1+x.
x(1+x)x+(1-x)(1+x)x(1+x)
Step 3.3
Reorder the factors of (1+x)x.
xx(1+x)+(1-x)(1+x)x(1+x)
xx(1+x)+(1-x)(1+x)x(1+x)
Step 4
Combine the numerators over the common denominator.
x+(1-x)(1+x)x(1+x)
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Expand (1-x)(1+x) using the FOIL Method.
Tap for more steps...
Step 5.1.1
Apply the distributive property.
x+1(1+x)-x(1+x)x(1+x)
Step 5.1.2
Apply the distributive property.
x+11+1x-x(1+x)x(1+x)
Step 5.1.3
Apply the distributive property.
x+11+1x-x1-xxx(1+x)
x+11+1x-x1-xxx(1+x)
Step 5.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Multiply 1 by 1.
x+1+1x-x1-xxx(1+x)
Step 5.2.1.2
Multiply x by 1.
x+1+x-x1-xxx(1+x)
Step 5.2.1.3
Multiply -1 by 1.
x+1+x-x-xxx(1+x)
Step 5.2.1.4
Multiply x by x by adding the exponents.
Tap for more steps...
Step 5.2.1.4.1
Move x.
x+1+x-x-(xx)x(1+x)
Step 5.2.1.4.2
Multiply x by x.
x+1+x-x-x2x(1+x)
x+1+x-x-x2x(1+x)
x+1+x-x-x2x(1+x)
Step 5.2.2
Subtract x from x.
x+1+0-x2x(1+x)
Step 5.2.3
Add 1 and 0.
x+1-x2x(1+x)
x+1-x2x(1+x)
Step 5.3
Reorder terms.
-x2+x+1x(1+x)
-x2+x+1x(1+x)
Step 6
Simplify with factoring out.
Tap for more steps...
Step 6.1
Factor -1 out of -x2.
-(x2)+x+1x(1+x)
Step 6.2
Factor -1 out of x.
-(x2)-1(-x)+1x(1+x)
Step 6.3
Factor -1 out of -(x2)-1(-x).
-(x2-x)+1x(1+x)
Step 6.4
Rewrite 1 as -1(-1).
-(x2-x)-1(-1)x(1+x)
Step 6.5
Factor -1 out of -(x2-x)-1(-1).
-(x2-x-1)x(1+x)
Step 6.6
Simplify the expression.
Tap for more steps...
Step 6.6.1
Rewrite -(x2-x-1) as -1(x2-x-1).
-1(x2-x-1)x(1+x)
Step 6.6.2
Move the negative in front of the fraction.
-x2-x-1x(1+x)
-x2-x-1x(1+x)
-x2-x-1x(1+x)
 [x2  12  π  xdx ]