Pre-Algebra Examples

Factor 4x^2+23xy+15y^2
4x2+23xy+15y24x2+23xy+15y2
Step 1
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=415=60ac=415=60 and whose sum is b=23b=23.
Tap for more steps...
Step 1.1
Reorder terms.
4x2+15y2+23xy4x2+15y2+23xy
Step 1.2
Reorder 15y215y2 and 23xy23xy.
4x2+23xy+15y24x2+23xy+15y2
Step 1.3
Factor 2323 out of 23xy23xy.
4x2+23(xy)+15y24x2+23(xy)+15y2
Step 1.4
Rewrite 2323 as 33 plus 2020
4x2+(3+20)(xy)+15y24x2+(3+20)(xy)+15y2
Step 1.5
Apply the distributive property.
4x2+3(xy)+20(xy)+15y24x2+3(xy)+20(xy)+15y2
Step 1.6
Remove unnecessary parentheses.
4x2+3xy+20(xy)+15y24x2+3xy+20(xy)+15y2
Step 1.7
Remove unnecessary parentheses.
4x2+3xy+20xy+15y24x2+3xy+20xy+15y2
4x2+3xy+20xy+15y24x2+3xy+20xy+15y2
Step 2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.1
Group the first two terms and the last two terms.
(4x2+3xy)+20xy+15y2(4x2+3xy)+20xy+15y2
Step 2.2
Factor out the greatest common factor (GCF) from each group.
x(4x+3y)+5y(4x+3y)x(4x+3y)+5y(4x+3y)
x(4x+3y)+5y(4x+3y)x(4x+3y)+5y(4x+3y)
Step 3
Factor the polynomial by factoring out the greatest common factor, 4x+3y4x+3y.
(4x+3y)(x+5y)(4x+3y)(x+5y)
 [x2  12  π  xdx ]  x2  12  π  xdx