Enter a problem...
Pre-Algebra Examples
43x2+15x+7xx2+10x+2543x2+15x+7xx2+10x+25
Step 1
Step 1.1
Factor 3x3x out of 3x2+15x3x2+15x.
Step 1.1.1
Factor 3x3x out of 3x23x2.
43x(x)+15x+7xx2+10x+2543x(x)+15x+7xx2+10x+25
Step 1.1.2
Factor 3x3x out of 15x15x.
43x(x)+3x(5)+7xx2+10x+2543x(x)+3x(5)+7xx2+10x+25
Step 1.1.3
Factor 3x3x out of 3x(x)+3x(5)3x(x)+3x(5).
43x(x+5)+7xx2+10x+2543x(x+5)+7xx2+10x+25
43x(x+5)+7xx2+10x+2543x(x+5)+7xx2+10x+25
Step 1.2
Factor using the perfect square rule.
Step 1.2.1
Rewrite 2525 as 5252.
43x(x+5)+7xx2+10x+5243x(x+5)+7xx2+10x+52
Step 1.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10x=2⋅x⋅510x=2⋅x⋅5
Step 1.2.3
Rewrite the polynomial.
43x(x+5)+7xx2+2⋅x⋅5+5243x(x+5)+7xx2+2⋅x⋅5+52
Step 1.2.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2, where a=xa=x and b=5b=5.
43x(x+5)+7x(x+5)243x(x+5)+7x(x+5)2
43x(x+5)+7x(x+5)243x(x+5)+7x(x+5)2
43x(x+5)+7x(x+5)243x(x+5)+7x(x+5)2
Step 2
To write 43x(x+5)43x(x+5) as a fraction with a common denominator, multiply by x+5x+5x+5x+5.
43x(x+5)⋅x+5x+5+7x(x+5)243x(x+5)⋅x+5x+5+7x(x+5)2
Step 3
To write 7x(x+5)27x(x+5)2 as a fraction with a common denominator, multiply by 3x3x3x3x.
43x(x+5)⋅x+5x+5+7x(x+5)2⋅3x3x43x(x+5)⋅x+5x+5+7x(x+5)2⋅3x3x
Step 4
Step 4.1
Multiply 43x(x+5)43x(x+5) by x+5x+5x+5x+5.
4(x+5)3x(x+5)(x+5)+7x(x+5)2⋅3x3x4(x+5)3x(x+5)(x+5)+7x(x+5)2⋅3x3x
Step 4.2
Raise x+5x+5 to the power of 11.
4(x+5)3x((x+5)1(x+5))+7x(x+5)2⋅3x3x4(x+5)3x((x+5)1(x+5))+7x(x+5)2⋅3x3x
Step 4.3
Raise x+5x+5 to the power of 11.
4(x+5)3x((x+5)1(x+5)1)+7x(x+5)2⋅3x3x4(x+5)3x((x+5)1(x+5)1)+7x(x+5)2⋅3x3x
Step 4.4
Use the power rule aman=am+n to combine exponents.
4(x+5)3x(x+5)1+1+7x(x+5)2⋅3x3x
Step 4.5
Add 1 and 1.
4(x+5)3x(x+5)2+7x(x+5)2⋅3x3x
Step 4.6
Multiply 7x(x+5)2 by 3x3x.
4(x+5)3x(x+5)2+7x(3x)(x+5)2(3x)
Step 4.7
Reorder the factors of (x+5)2(3x).
4(x+5)3x(x+5)2+7x(3x)3x(x+5)2
4(x+5)3x(x+5)2+7x(3x)3x(x+5)2
Step 5
Combine the numerators over the common denominator.
4(x+5)+7x(3x)3x(x+5)2
Step 6
Step 6.1
Apply the distributive property.
4x+4⋅5+7x(3x)3x(x+5)2
Step 6.2
Multiply 4 by 5.
4x+20+7x(3x)3x(x+5)2
Step 6.3
Rewrite using the commutative property of multiplication.
4x+20+7⋅3x⋅x3x(x+5)2
Step 6.4
Multiply x by x by adding the exponents.
Step 6.4.1
Move x.
4x+20+7⋅3(x⋅x)3x(x+5)2
Step 6.4.2
Multiply x by x.
4x+20+7⋅3x23x(x+5)2
4x+20+7⋅3x23x(x+5)2
Step 6.5
Multiply 7 by 3.
4x+20+21x23x(x+5)2
Step 6.6
Reorder terms.
21x2+4x+203x(x+5)2
21x2+4x+203x(x+5)2