Pre-Algebra Examples

Solve Using the Square Root Property x^2+4x+29=0
x2+4x+29=0x2+4x+29=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=1a=1, b=4b=4, and c=29c=29 into the quadratic formula and solve for xx.
-4±42-4(129)214±424(129)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise 44 to the power of 22.
x=-4±16-412921x=4±16412921
Step 3.1.2
Multiply -41294129.
Tap for more steps...
Step 3.1.2.1
Multiply -44 by 11.
x=-4±16-42921x=4±1642921
Step 3.1.2.2
Multiply -44 by 2929.
x=-4±16-11621x=4±1611621
x=-4±16-11621x=4±1611621
Step 3.1.3
Subtract 116116 from 1616.
x=-4±-10021x=4±10021
Step 3.1.4
Rewrite -100100 as -1(100)1(100).
x=-4±-110021x=4±110021
Step 3.1.5
Rewrite -1(100)1(100) as -11001100.
x=-4±-110021x=4±110021
Step 3.1.6
Rewrite -11 as ii.
x=-4±i10021x=4±i10021
Step 3.1.7
Rewrite 100100 as 102102.
x=-4±i10221x=4±i10221
Step 3.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=-4±i1021x=4±i1021
Step 3.1.9
Move 1010 to the left of ii.
x=-4±10i21x=4±10i21
x=-4±10i21
Step 3.2
Multiply 2 by 1.
x=-4±10i2
Step 3.3
Simplify -4±10i2.
x=-2±5i
x=-2±5i
Step 4
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 4 to the power of 2.
x=-4±16-412921
Step 4.1.2
Multiply -4129.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 1.
x=-4±16-42921
Step 4.1.2.2
Multiply -4 by 29.
x=-4±16-11621
x=-4±16-11621
Step 4.1.3
Subtract 116 from 16.
x=-4±-10021
Step 4.1.4
Rewrite -100 as -1(100).
x=-4±-110021
Step 4.1.5
Rewrite -1(100) as -1100.
x=-4±-110021
Step 4.1.6
Rewrite -1 as i.
x=-4±i10021
Step 4.1.7
Rewrite 100 as 102.
x=-4±i10221
Step 4.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=-4±i1021
Step 4.1.9
Move 10 to the left of i.
x=-4±10i21
x=-4±10i21
Step 4.2
Multiply 2 by 1.
x=-4±10i2
Step 4.3
Simplify -4±10i2.
x=-2±5i
Step 4.4
Change the ± to +.
x=-2+5i
x=-2+5i
Step 5
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise 4 to the power of 2.
x=-4±16-412921
Step 5.1.2
Multiply -4129.
Tap for more steps...
Step 5.1.2.1
Multiply -4 by 1.
x=-4±16-42921
Step 5.1.2.2
Multiply -4 by 29.
x=-4±16-11621
x=-4±16-11621
Step 5.1.3
Subtract 116 from 16.
x=-4±-10021
Step 5.1.4
Rewrite -100 as -1(100).
x=-4±-110021
Step 5.1.5
Rewrite -1(100) as -1100.
x=-4±-110021
Step 5.1.6
Rewrite -1 as i.
x=-4±i10021
Step 5.1.7
Rewrite 100 as 102.
x=-4±i10221
Step 5.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=-4±i1021
Step 5.1.9
Move 10 to the left of i.
x=-4±10i21
x=-4±10i21
Step 5.2
Multiply 2 by 1.
x=-4±10i2
Step 5.3
Simplify -4±10i2.
x=-2±5i
Step 5.4
Change the ± to -.
x=-2-5i
x=-2-5i
Step 6
The final answer is the combination of both solutions.
x=-2+5i,-2-5i
 [x2  12  π  xdx ]