Enter a problem...
Pre-Algebra Examples
x2+4x+29=0x2+4x+29=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=1a=1, b=4b=4, and c=29c=29 into the quadratic formula and solve for xx.
-4±√42-4⋅(1⋅29)2⋅1−4±√42−4⋅(1⋅29)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise 44 to the power of 22.
x=-4±√16-4⋅1⋅292⋅1x=−4±√16−4⋅1⋅292⋅1
Step 3.1.2
Multiply -4⋅1⋅29−4⋅1⋅29.
Step 3.1.2.1
Multiply -4−4 by 11.
x=-4±√16-4⋅292⋅1x=−4±√16−4⋅292⋅1
Step 3.1.2.2
Multiply -4−4 by 2929.
x=-4±√16-1162⋅1x=−4±√16−1162⋅1
x=-4±√16-1162⋅1x=−4±√16−1162⋅1
Step 3.1.3
Subtract 116116 from 1616.
x=-4±√-1002⋅1x=−4±√−1002⋅1
Step 3.1.4
Rewrite -100−100 as -1(100)−1(100).
x=-4±√-1⋅1002⋅1x=−4±√−1⋅1002⋅1
Step 3.1.5
Rewrite √-1(100)√−1(100) as √-1⋅√100√−1⋅√100.
x=-4±√-1⋅√1002⋅1x=−4±√−1⋅√1002⋅1
Step 3.1.6
Rewrite √-1√−1 as ii.
x=-4±i⋅√1002⋅1x=−4±i⋅√1002⋅1
Step 3.1.7
Rewrite 100100 as 102102.
x=-4±i⋅√1022⋅1x=−4±i⋅√1022⋅1
Step 3.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=-4±i⋅102⋅1x=−4±i⋅102⋅1
Step 3.1.9
Move 1010 to the left of ii.
x=-4±10i2⋅1x=−4±10i2⋅1
x=-4±10i2⋅1
Step 3.2
Multiply 2 by 1.
x=-4±10i2
Step 3.3
Simplify -4±10i2.
x=-2±5i
x=-2±5i
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 4 to the power of 2.
x=-4±√16-4⋅1⋅292⋅1
Step 4.1.2
Multiply -4⋅1⋅29.
Step 4.1.2.1
Multiply -4 by 1.
x=-4±√16-4⋅292⋅1
Step 4.1.2.2
Multiply -4 by 29.
x=-4±√16-1162⋅1
x=-4±√16-1162⋅1
Step 4.1.3
Subtract 116 from 16.
x=-4±√-1002⋅1
Step 4.1.4
Rewrite -100 as -1(100).
x=-4±√-1⋅1002⋅1
Step 4.1.5
Rewrite √-1(100) as √-1⋅√100.
x=-4±√-1⋅√1002⋅1
Step 4.1.6
Rewrite √-1 as i.
x=-4±i⋅√1002⋅1
Step 4.1.7
Rewrite 100 as 102.
x=-4±i⋅√1022⋅1
Step 4.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=-4±i⋅102⋅1
Step 4.1.9
Move 10 to the left of i.
x=-4±10i2⋅1
x=-4±10i2⋅1
Step 4.2
Multiply 2 by 1.
x=-4±10i2
Step 4.3
Simplify -4±10i2.
x=-2±5i
Step 4.4
Change the ± to +.
x=-2+5i
x=-2+5i
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise 4 to the power of 2.
x=-4±√16-4⋅1⋅292⋅1
Step 5.1.2
Multiply -4⋅1⋅29.
Step 5.1.2.1
Multiply -4 by 1.
x=-4±√16-4⋅292⋅1
Step 5.1.2.2
Multiply -4 by 29.
x=-4±√16-1162⋅1
x=-4±√16-1162⋅1
Step 5.1.3
Subtract 116 from 16.
x=-4±√-1002⋅1
Step 5.1.4
Rewrite -100 as -1(100).
x=-4±√-1⋅1002⋅1
Step 5.1.5
Rewrite √-1(100) as √-1⋅√100.
x=-4±√-1⋅√1002⋅1
Step 5.1.6
Rewrite √-1 as i.
x=-4±i⋅√1002⋅1
Step 5.1.7
Rewrite 100 as 102.
x=-4±i⋅√1022⋅1
Step 5.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=-4±i⋅102⋅1
Step 5.1.9
Move 10 to the left of i.
x=-4±10i2⋅1
x=-4±10i2⋅1
Step 5.2
Multiply 2 by 1.
x=-4±10i2
Step 5.3
Simplify -4±10i2.
x=-2±5i
Step 5.4
Change the ± to -.
x=-2-5i
x=-2-5i
Step 6
The final answer is the combination of both solutions.
x=-2+5i,-2-5i