Pre-Algebra Examples

Solve Using the Square Root Property x^2-6x-4=0
x2-6x-4=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2
Substitute the values a=1, b=-6, and c=-4 into the quadratic formula and solve for x.
6±(-6)2-4(1-4)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise -6 to the power of 2.
x=6±36-41-421
Step 3.1.2
Multiply -41-4.
Tap for more steps...
Step 3.1.2.1
Multiply -4 by 1.
x=6±36-4-421
Step 3.1.2.2
Multiply -4 by -4.
x=6±36+1621
x=6±36+1621
Step 3.1.3
Add 36 and 16.
x=6±5221
Step 3.1.4
Rewrite 52 as 2213.
Tap for more steps...
Step 3.1.4.1
Factor 4 out of 52.
x=6±4(13)21
Step 3.1.4.2
Rewrite 4 as 22.
x=6±221321
x=6±221321
Step 3.1.5
Pull terms out from under the radical.
x=6±21321
x=6±21321
Step 3.2
Multiply 2 by 1.
x=6±2132
Step 3.3
Simplify 6±2132.
x=3±13
x=3±13
Step 4
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise -6 to the power of 2.
x=6±36-41-421
Step 4.1.2
Multiply -41-4.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 1.
x=6±36-4-421
Step 4.1.2.2
Multiply -4 by -4.
x=6±36+1621
x=6±36+1621
Step 4.1.3
Add 36 and 16.
x=6±5221
Step 4.1.4
Rewrite 52 as 2213.
Tap for more steps...
Step 4.1.4.1
Factor 4 out of 52.
x=6±4(13)21
Step 4.1.4.2
Rewrite 4 as 22.
x=6±221321
x=6±221321
Step 4.1.5
Pull terms out from under the radical.
x=6±21321
x=6±21321
Step 4.2
Multiply 2 by 1.
x=6±2132
Step 4.3
Simplify 6±2132.
x=3±13
Step 4.4
Change the ± to +.
x=3+13
x=3+13
Step 5
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise -6 to the power of 2.
x=6±36-41-421
Step 5.1.2
Multiply -41-4.
Tap for more steps...
Step 5.1.2.1
Multiply -4 by 1.
x=6±36-4-421
Step 5.1.2.2
Multiply -4 by -4.
x=6±36+1621
x=6±36+1621
Step 5.1.3
Add 36 and 16.
x=6±5221
Step 5.1.4
Rewrite 52 as 2213.
Tap for more steps...
Step 5.1.4.1
Factor 4 out of 52.
x=6±4(13)21
Step 5.1.4.2
Rewrite 4 as 22.
x=6±221321
x=6±221321
Step 5.1.5
Pull terms out from under the radical.
x=6±21321
x=6±21321
Step 5.2
Multiply 2 by 1.
x=6±2132
Step 5.3
Simplify 6±2132.
x=3±13
Step 5.4
Change the ± to -.
x=3-13
x=3-13
Step 6
The final answer is the combination of both solutions.
x=3+13,3-13
Step 7
The result can be shown in multiple forms.
Exact Form:
x=3+13,3-13
Decimal Form:
x=6.60555127,-0.60555127
 [x2  12  π  xdx ]