Enter a problem...
Pre-Algebra Examples
x2-6x-4=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2
Substitute the values a=1, b=-6, and c=-4 into the quadratic formula and solve for x.
6±√(-6)2-4⋅(1⋅-4)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -6 to the power of 2.
x=6±√36-4⋅1⋅-42⋅1
Step 3.1.2
Multiply -4⋅1⋅-4.
Step 3.1.2.1
Multiply -4 by 1.
x=6±√36-4⋅-42⋅1
Step 3.1.2.2
Multiply -4 by -4.
x=6±√36+162⋅1
x=6±√36+162⋅1
Step 3.1.3
Add 36 and 16.
x=6±√522⋅1
Step 3.1.4
Rewrite 52 as 22⋅13.
Step 3.1.4.1
Factor 4 out of 52.
x=6±√4(13)2⋅1
Step 3.1.4.2
Rewrite 4 as 22.
x=6±√22⋅132⋅1
x=6±√22⋅132⋅1
Step 3.1.5
Pull terms out from under the radical.
x=6±2√132⋅1
x=6±2√132⋅1
Step 3.2
Multiply 2 by 1.
x=6±2√132
Step 3.3
Simplify 6±2√132.
x=3±√13
x=3±√13
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise -6 to the power of 2.
x=6±√36-4⋅1⋅-42⋅1
Step 4.1.2
Multiply -4⋅1⋅-4.
Step 4.1.2.1
Multiply -4 by 1.
x=6±√36-4⋅-42⋅1
Step 4.1.2.2
Multiply -4 by -4.
x=6±√36+162⋅1
x=6±√36+162⋅1
Step 4.1.3
Add 36 and 16.
x=6±√522⋅1
Step 4.1.4
Rewrite 52 as 22⋅13.
Step 4.1.4.1
Factor 4 out of 52.
x=6±√4(13)2⋅1
Step 4.1.4.2
Rewrite 4 as 22.
x=6±√22⋅132⋅1
x=6±√22⋅132⋅1
Step 4.1.5
Pull terms out from under the radical.
x=6±2√132⋅1
x=6±2√132⋅1
Step 4.2
Multiply 2 by 1.
x=6±2√132
Step 4.3
Simplify 6±2√132.
x=3±√13
Step 4.4
Change the ± to +.
x=3+√13
x=3+√13
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise -6 to the power of 2.
x=6±√36-4⋅1⋅-42⋅1
Step 5.1.2
Multiply -4⋅1⋅-4.
Step 5.1.2.1
Multiply -4 by 1.
x=6±√36-4⋅-42⋅1
Step 5.1.2.2
Multiply -4 by -4.
x=6±√36+162⋅1
x=6±√36+162⋅1
Step 5.1.3
Add 36 and 16.
x=6±√522⋅1
Step 5.1.4
Rewrite 52 as 22⋅13.
Step 5.1.4.1
Factor 4 out of 52.
x=6±√4(13)2⋅1
Step 5.1.4.2
Rewrite 4 as 22.
x=6±√22⋅132⋅1
x=6±√22⋅132⋅1
Step 5.1.5
Pull terms out from under the radical.
x=6±2√132⋅1
x=6±2√132⋅1
Step 5.2
Multiply 2 by 1.
x=6±2√132
Step 5.3
Simplify 6±2√132.
x=3±√13
Step 5.4
Change the ± to -.
x=3-√13
x=3-√13
Step 6
The final answer is the combination of both solutions.
x=3+√13,3-√13
Step 7
The result can be shown in multiple forms.
Exact Form:
x=3+√13,3-√13
Decimal Form:
x=6.60555127…,-0.60555127…