Enter a problem...
Pre-Algebra Examples
-216x3+1−216x3+1
Step 1
Step 1.1
Factor -1−1 out of -216x3−216x3.
-(216x3)+1−(216x3)+1
Step 1.2
Rewrite 11 as -1(-1)−1(−1).
-(216x3)-1(-1)−(216x3)−1(−1)
Step 1.3
Factor -1−1 out of -(216x3)-1(-1)−(216x3)−1(−1).
-(216x3-1)−(216x3−1)
-(216x3-1)−(216x3−1)
Step 2
Rewrite 216x3216x3 as (6x)3(6x)3.
-((6x)3-1)−((6x)3−1)
Step 3
Rewrite 11 as 1313.
-((6x)3-13)−((6x)3−13)
Step 4
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=6xa=6x and b=1b=1.
-((6x-1)((6x)2+6x⋅1+12))−((6x−1)((6x)2+6x⋅1+12))
Step 5
Step 5.1
Simplify.
Step 5.1.1
Apply the product rule to 6x6x.
-((6x-1)(62x2+6x⋅1+12))−((6x−1)(62x2+6x⋅1+12))
Step 5.1.2
Raise 66 to the power of 22.
-((6x-1)(36x2+6x⋅1+12))−((6x−1)(36x2+6x⋅1+12))
Step 5.1.3
Multiply 66 by 11.
-((6x-1)(36x2+6x+12))−((6x−1)(36x2+6x+12))
Step 5.1.4
One to any power is one.
-((6x-1)(36x2+6x+1))−((6x−1)(36x2+6x+1))
-((6x-1)(36x2+6x+1))−((6x−1)(36x2+6x+1))
Step 5.2
Remove unnecessary parentheses.
-(6x-1)(36x2+6x+1)−(6x−1)(36x2+6x+1)
-(6x-1)(36x2+6x+1)−(6x−1)(36x2+6x+1)