501 |
Find Reduced Row Echelon Form |
[[3,-2,0],[8,-3,4],[13,-2,0]] |
⎡⎢⎣3−208−3413−20⎤⎥⎦ |
502 |
Find Reduced Row Echelon Form |
[[2,4,-1,-2,2,6],[1,3,2,-7,3,9],[5,8,-7,6,1,4]] |
⎡⎢⎣24−1−226132−73958−7614⎤⎥⎦ |
503 |
Find Reduced Row Echelon Form |
[[-3,-2],[4,4],[5,7]] |
⎡⎢⎣−3−24457⎤⎥⎦ |
504 |
Find Reduced Row Echelon Form |
[[1,2],[2,-2]] |
[122−2] |
505 |
Find Reduced Row Echelon Form |
[[1,2,0,0],[3,4,0,0]] |
[12003400] |
506 |
Find Reduced Row Echelon Form |
[[1,3,6],[1,4,5]] |
[136145] |
507 |
Find Reduced Row Echelon Form |
[[1,2,7],[2,1,8]] |
[127218] |
508 |
Find Reduced Row Echelon Form |
[[1,2,-9,-8],[0,1,7,-3],[0,0,1,7]] |
⎡⎢⎣12−9−8017−30017⎤⎥⎦ |
509 |
Find Reduced Row Echelon Form |
[[1,2]] |
[12] |
510 |
Find Reduced Row Echelon Form |
[[1,-3,4,7],[0,1,2,2],[0,0,1,5]] |
⎡⎢⎣1−34701220015⎤⎥⎦ |
511 |
Find Reduced Row Echelon Form |
[[1,-3,5,-2],[2,-1,5,6]] |
[1−35−22−156] |
512 |
Find Reduced Row Echelon Form |
[[-1,5],[0,0]] |
[−1500] |
513 |
Find Reduced Row Echelon Form |
[[1,h,4],[3,6,8]] |
[1h4368] |
514 |
Find the Inverse |
[[7,2,4],[6,6,3],[8,4,9]] |
⎡⎢⎣724663849⎤⎥⎦ |
515 |
Find the Inverse |
[[12,23],[12,23]] |
[12231223] |
516 |
Find the Inverse |
[[2,6,9],[-1,1,3],[4,4,0]] |
⎡⎢⎣269−113440⎤⎥⎦ |
517 |
Find the Inverse |
[[-6,-9,-8],[2,9,6],[0,1,-1]] |
⎡⎢⎣−6−9−829601−1⎤⎥⎦ |
518 |
Find Reduced Row Echelon Form |
[[0,0,0,0,1,0,1,1],[0,0,0,1,0,1,1,0],[0,0,1,0,1,1,0,0],[0,1,0,1,1,0,0,0]] |
⎡⎢
⎢
⎢
⎢⎣00001011000101100010110001011000⎤⎥
⎥
⎥
⎥⎦ |
519 |
Find Reduced Row Echelon Form |
[[1,0,-3,8],[2,2,9,7],[0,1,5,-2]] |
⎡⎢⎣10−382297015−2⎤⎥⎦ |
520 |
Find Reduced Row Echelon Form |
[[1,0,1],[3,0,3],[0,1,-1],[3,1,2]] |
⎡⎢
⎢
⎢
⎢⎣10130301−1312⎤⎥
⎥
⎥
⎥⎦ |
521 |
Find Reduced Row Echelon Form |
[[1,1,0,1,-2],[1,-1,0,-1,2]] |
[1101−21−10−12] |
522 |
Find Reduced Row Echelon Form |
[[1,-1,1,-1],[2,1,-3,8],[1,-2,3,-5]] |
⎡⎢⎣1−11−121−381−23−5⎤⎥⎦ |
523 |
Find the Inverse |
[[1,2,3],[4,5,6],[7,8,9]] |
⎡⎢⎣123456789⎤⎥⎦ |
524 |
Find the Inverse |
[[1,1,1],[0,2,3],[5,5,1]] |
⎡⎢⎣111023551⎤⎥⎦ |
525 |
Find the Inverse |
[[1,1,1],[3,5,4],[3,6,5]] |
⎡⎢⎣111354365⎤⎥⎦ |
526 |
Find the Inverse |
[[1,-1],[-1,0]] |
[1−1−10] |
527 |
Find the Inverse |
[[1,-1],[1,1]] |
[1−111] |
528 |
Find the Inverse |
[[1,2],[4,6]] |
[1246] |
529 |
Find the Inverse |
[[19,11,21],[9,0,10],[10,12,11]] |
⎡⎢⎣1911219010101211⎤⎥⎦ |
530 |
Find the Inverse |
[[1,2,3],[0,1,-1],[2,2,2]] |
⎡⎢⎣12301−1222⎤⎥⎦ |
531 |
Find the Inverse |
[[1,2],[2,4]] |
[1224] |
532 |
Find the Inverse |
[[10,-2,5],[6,-1,4],[1,0,1]] |
⎡⎢⎣10−256−14101⎤⎥⎦ |
533 |
Find the Inverse |
[[-2,3],[1,-2]] |
[−231−2] |
534 |
Find the Inverse |
[[-4,10],[5,6]] |
[−41056] |
535 |
Find the Inverse |
[[4,104.7,2755.57,72917.727],[104.7,2755.7,72917.727,1939880.3089],[2755.7,72917.727,1939880.3089,51878323.13217],[72917.727,1939880.3089,51878323.13217,1394447102.92762]] |
⎡⎢
⎢
⎢
⎢⎣4104.72755.5772917.727104.72755.772917.7271939880.30892755.772917.7271939880.308951878323.1321772917.7271939880.308951878323.132171394447102.92762⎤⎥
⎥
⎥
⎥⎦ |
536 |
Find the Determinant |
[[a,b,0,0],[c,d,0,0],[0,0,a,-b],[0,0,c,d]] |
⎡⎢
⎢
⎢
⎢⎣ab00cd0000a−b00cd⎤⎥
⎥
⎥
⎥⎦ |
537 |
Find the Determinant |
[[3,1,2],[5,3,-6],[2,4,3]] |
⎡⎢⎣31253−6243⎤⎥⎦ |
538 |
Find the Determinant |
[[a,b,c],[d,e,f],[4g,4h,4i]] |
⎡⎢⎣abcdef4g4h4i⎤⎥⎦ |
539 |
Find the Determinant |
[[x,-1/5,-1/5],[-1/5,x,-1/5],[-1/5,-1/5,x]] |
⎡⎢
⎢
⎢⎣x−15−15−15x−15−15−15x⎤⎥
⎥
⎥⎦ |
540 |
Find the Determinant |
[[a,-2b,3d],[4a,b,-d],[2a,-b,3d]] |
⎡⎢⎣a−2b3d4ab−d2a−b3d⎤⎥⎦ |
541 |
Find the Inverse |
M=[[1,8],[-1,-7]] |
M=[18−1−7] |
542 |
Find the Inverse |
[[0,1,-3],[2,3,-1],[4,5,-2]] |
⎡⎢⎣01−323−145−2⎤⎥⎦ |
543 |
Find the Inverse |
[[1,0,0],[0,1,0],[0,0,1]] |
⎡⎢⎣100010001⎤⎥⎦ |
544 |
Find the Determinant |
[[x,1,0,0],[1,x,1,1],[0,1,x,1],[0,1,1,x]] |
⎡⎢
⎢
⎢
⎢⎣x1001x1101x1011x⎤⎥
⎥
⎥
⎥⎦ |
545 |
Find the Determinant |
[[x,y,z],[x^2,y^2,z^2],[x^3,y^3,z^3]] |
⎡⎢⎣xyzx2y2z2x3y3z3⎤⎥⎦ |
546 |
Find the Inverse |
[[0,1,2],[1,0,3],[4,-3,8]] |
⎡⎢⎣0121034−38⎤⎥⎦ |
547 |
Find the Inverse |
[[1,1,0],[3,1,1],[0,1,-1]] |
⎡⎢⎣11031101−1⎤⎥⎦ |
548 |
Find the Determinant |
[[4,5],[0,0]] |
[4500] |
549 |
Find the Determinant |
[[6,3,2,4,0],[9,0,-4,1,0],[8,-5,6,7,1],[3,0,0,0,0],[4,2,3,2,0]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣6324090−4108−56713000042320⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
550 |
Find the Determinant |
[[7,9],[-2,-5]] |
[79−2−5] |
551 |
Find the Determinant |
[[5,0,0],[0,5,0],[0,0,5]] |
⎡⎢⎣500050005⎤⎥⎦ |
552 |
Find the Determinant |
[[2,2,1],[-3,1,0],[1,-1,2]] |
⎡⎢⎣221−3101−12⎤⎥⎦ |
553 |
Find the Determinant |
[[3,-1,4],[6,3,5],[2,-1,6]] |
⎡⎢⎣3−146352−16⎤⎥⎦ |
554 |
Find the Determinant |
[[5,8,6],[4,2,3],[6,0,1]] |
⎡⎢⎣586423601⎤⎥⎦ |
555 |
Find the Determinant |
[[-2,-3,5,-7],[3,2,-2,5],[1,-2,4,-2],[2,5,-7,5]] |
⎡⎢
⎢
⎢
⎢⎣−2−35−732−251−24−225−75⎤⎥
⎥
⎥
⎥⎦ |
556 |
Find the Determinant |
[[3,-2,1],[1,-3,4],[1,-2,0]] |
⎡⎢⎣3−211−341−20⎤⎥⎦ |
557 |
Find the Determinant |
[[1,2,3],[4,5,6],[7,8,0]] |
⎡⎢⎣123456780⎤⎥⎦ |
558 |
Multiply the Matrices |
[[0,-1],[-3,7],[2,-9]][[0,8,0],[1,0,0],[0,0,1]] |
⎡⎢⎣0−1−372−9⎤⎥⎦⎡⎢⎣080100001⎤⎥⎦ |
559 |
Find the Determinant |
[[1,2,0],[2,1,-1],[3,1,1]] |
⎡⎢⎣12021−1311⎤⎥⎦ |
560 |
Find the Determinant |
[[2,1],[1,2]] |
[2112] |
561 |
Find the Determinant |
[[2,1],[3,2]] |
[2132] |
562 |
Find the Determinant |
[[1-x,1,-2],[-1,2-x,1],[0,1,-1-x]] |
⎡⎢⎣1−x1−2−12−x101−1−x⎤⎥⎦ |
563 |
Find the Determinant |
[[1,-4,2],[-2,8,-9],[-1,7,0]] |
⎡⎢⎣1−42−28−9−170⎤⎥⎦ |
564 |
Find the Determinant |
[[1,0,1],[2,-1,2],[1,-2,3]] |
⎡⎢⎣1012−121−23⎤⎥⎦ |
565 |
Find the Determinant |
[[1,0,1],[2,2,2],[2,2,1]] |
⎡⎢⎣101222221⎤⎥⎦ |
566 |
Find the Determinant |
[[-1,1,1],[4,3,-5],[-1,-3,-4]] |
⎡⎢⎣−11143−5−1−3−4⎤⎥⎦ |
567 |
Find the Determinant |
[[1,1,1],[2,-1,1],[-1,3,-1]] |
⎡⎢⎣1112−11−13−1⎤⎥⎦ |
568 |
Find the Determinant |
[[1,2,1],[-2,1,2],[1,2,1]] |
⎡⎢⎣121−212121⎤⎥⎦ |
569 |
Simplify the Matrix |
[[1,2,-3],[4,0,2]]+[[-1,6,3],[8,12,14]] |
[12−3402]+[−16381214] |
570 |
Multiply the Matrices |
3[[2,4]] |
3[24] |
571 |
Simplify the Matrix |
[[-1,-1,-3],[-1,1,0],[1,0,1]][[3,1,3],[1,3,3],[-1,-1,-1]][[1,1,3],[1,2,3],[-1,-1,-2]] |
⎡⎢⎣−1−1−3−110101⎤⎥⎦⎡⎢⎣313133−1−1−1⎤⎥⎦⎡⎢⎣113123−1−1−2⎤⎥⎦ |
572 |
Simplify the Matrix |
[[6,-3,h],[-24,12,7]] |
[6−3h−24127] |
573 |
Simplify the Matrix |
[[1,1,0],[-3,0,1],[0,-2,1]][[a],[a^2],[T]] |
⎡⎢⎣110−3010−21⎤⎥⎦⎡⎢⎣aa2T⎤⎥⎦ |
574 |
Simplify the Matrix |
[[4,5,3],[5,3,4]][[4,5,5,2],[1,6,3,2],[4,5,6,6],[2,4,9,4]] |
[453534]⎡⎢
⎢
⎢
⎢⎣4552163245662494⎤⎥
⎥
⎥
⎥⎦ |
575 |
Simplify the Matrix |
x=[[-1,1],[2,-2]] |
x=[−112−2] |
576 |
Write as a Vector Equality |
-3x-4y=2 , 8y=-6x-4 |
−3x−4y=2 , 8y=−6x−4 |
577 |
Write as a Vector Equality |
4ax-3y=7 , -x-by=8 |
4ax−3y=7 , −x−by=8 |
578 |
Write as a Vector Equality |
-4x+5y=-35 , -x-5y=10 |
−4x+5y=−35 , −x−5y=10 |
579 |
Write as a Vector Equality |
-4x-8y=-4 , 5x+10y=0 |
−4x−8y=−4 , 5x+10y=0 |
580 |
Solve by Substitution |
11x-20y=28 , 3x+4y=36 |
11x−20y=28 , 3x+4y=36 |
581 |
Solve by Substitution |
3x+7y+2=0 , 12x+28y-6=0 |
3x+7y+2=0 , 12x+28y−6=0 |
582 |
Write as a Vector Equality |
2x+7y=9 , 5x+7y=5 |
2x+7y=9 , 5x+7y=5 |
583 |
Solve Using a Matrix by Elimination |
x-9=y , x+y=6 |
x−9=y , x+y=6 |
584 |
Write as a Vector Equality |
x-2y=1 , 3x-6y=2 |
x−2y=1 , 3x−6y=2 |
585 |
Write as a Vector Equality |
1/x+2/y-4/z=1 , 2/x+3/y+8/z=0 , -1/x+9/y+10/z=5 |
1x+2y−4z=1 , 2x+3y+8z=0 , −1x+9y+10z=5 |
586 |
Write as a Vector Equality |
x-5y=-5 , -x+5y=5 |
x−5y=−5 , −x+5y=5 |
587 |
Write as a Vector Equality |
2d+3g-h=a , d-g+3h=b , 3d+7g-5h=c |
2d+3g−h=a , d−g+3h=b , 3d+7g−5h=c |
588 |
Write as a Vector Equality |
2a+b-d-2g+2h+j+5k=21 , a+b-3d+g+h+j+2k=-5 , a+2b-8d+5g+h+j-6k=-15 , 3a+3b-9d+3g+6h+5j+2k=-24 , -2a-b+d+2g+h+j-9k=-30 |
2a+b−d−2g+2h+j+5k=21 , a+b−3d+g+h+j+2k=−5 , a+2b−8d+5g+h+j−6k=−15 , 3a+3b−9d+3g+6h+5j+2k=−24 , −2a−b+d+2g+h+j−9k=−30 |
589 |
Find the Domain |
4x-y=8 |
4x−y=8 |
590 |
Find the Domain |
y=x+5 |
y=x+5 |
591 |
Find the Domain |
y=x+6 |
y=x+6 |
592 |
Solve by Substitution |
2x+3y=6 , 4x+6y=24 |
2x+3y=6 , 4x+6y=24 |
593 |
Find the Domain |
y=7 |
y=7 |
594 |
Find the Domain |
y=x+2 |
y=x+2 |
595 |
Find the Domain |
y=x+1 |
y=x+1 |
596 |
Find the Domain |
y=x+4 |
y=x+4 |
597 |
Find the Domain |
y=-x |
y=−x |
598 |
Find the Norm |
[[2-2i],[4+4i],[4-1i]] |
⎡⎢⎣2−2i4+4i4−1i⎤⎥⎦ |
599 |
Write as a Vector Equality |
x^2-4x^3+3x^4=2 , x-5x^2-6x^3+3x^4=3 , -3x^4=15 , 5x^3-4x^4=10 |
x2−4x3+3x4=2 , x−5x2−6x3+3x4=3 , −3x4=15 , 5x3−4x4=10 |
600 |
Write as a Vector Equality |
3(1)+6(1)+6=0 , 8(y)=4(2)+24 |
3(1)+6(1)+6=0 , 8(y)=4(2)+24 |