Enter a problem...
Linear Algebra Examples
[cos(x)sin(x)-sin(x)cos(x)]
Step 1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
cos(x)cos(x)-(-sin(x)sin(x))
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Multiply cos(x)cos(x).
Step 2.1.1.1
Raise cos(x) to the power of 1.
cos1(x)cos(x)-(-sin(x)sin(x))
Step 2.1.1.2
Raise cos(x) to the power of 1.
cos1(x)cos1(x)-(-sin(x)sin(x))
Step 2.1.1.3
Use the power rule aman=am+n to combine exponents.
cos(x)1+1-(-sin(x)sin(x))
Step 2.1.1.4
Add 1 and 1.
cos2(x)-(-sin(x)sin(x))
cos2(x)-(-sin(x)sin(x))
Step 2.1.2
Multiply -sin(x)sin(x).
Step 2.1.2.1
Raise sin(x) to the power of 1.
cos2(x)--(sin1(x)sin(x))
Step 2.1.2.2
Raise sin(x) to the power of 1.
cos2(x)--(sin1(x)sin1(x))
Step 2.1.2.3
Use the power rule aman=am+n to combine exponents.
cos2(x)--sin(x)1+1
Step 2.1.2.4
Add 1 and 1.
cos2(x)--sin2(x)
cos2(x)--sin2(x)
Step 2.1.3
Multiply --sin2(x).
Step 2.1.3.1
Multiply -1 by -1.
cos2(x)+1sin2(x)
Step 2.1.3.2
Multiply sin2(x) by 1.
cos2(x)+sin2(x)
cos2(x)+sin2(x)
cos2(x)+sin2(x)
Step 2.2
Rearrange terms.
sin2(x)+cos2(x)
Step 2.3
Apply pythagorean identity.
1
1