Linear Algebra Examples

Find the Determinant [[cos(x),sin(x)],[-sin(x),cos(x)]]
[cos(x)sin(x)-sin(x)cos(x)]
Step 1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
cos(x)cos(x)-(-sin(x)sin(x))
Step 2
Simplify the determinant.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Multiply cos(x)cos(x).
Tap for more steps...
Step 2.1.1.1
Raise cos(x) to the power of 1.
cos1(x)cos(x)-(-sin(x)sin(x))
Step 2.1.1.2
Raise cos(x) to the power of 1.
cos1(x)cos1(x)-(-sin(x)sin(x))
Step 2.1.1.3
Use the power rule aman=am+n to combine exponents.
cos(x)1+1-(-sin(x)sin(x))
Step 2.1.1.4
Add 1 and 1.
cos2(x)-(-sin(x)sin(x))
cos2(x)-(-sin(x)sin(x))
Step 2.1.2
Multiply -sin(x)sin(x).
Tap for more steps...
Step 2.1.2.1
Raise sin(x) to the power of 1.
cos2(x)--(sin1(x)sin(x))
Step 2.1.2.2
Raise sin(x) to the power of 1.
cos2(x)--(sin1(x)sin1(x))
Step 2.1.2.3
Use the power rule aman=am+n to combine exponents.
cos2(x)--sin(x)1+1
Step 2.1.2.4
Add 1 and 1.
cos2(x)--sin2(x)
cos2(x)--sin2(x)
Step 2.1.3
Multiply --sin2(x).
Tap for more steps...
Step 2.1.3.1
Multiply -1 by -1.
cos2(x)+1sin2(x)
Step 2.1.3.2
Multiply sin2(x) by 1.
cos2(x)+sin2(x)
cos2(x)+sin2(x)
cos2(x)+sin2(x)
Step 2.2
Rearrange terms.
sin2(x)+cos2(x)
Step 2.3
Apply pythagorean identity.
1
1
 [x2  12  π  xdx ]