Linear Algebra Examples

Solve the Matrix Equation [[a,b],[c,0]]*[[0,i],[x,y]]=[[0,i],[z,0]]
[abc0][0ixy]=[0iz0][abc0][0ixy]=[0iz0]
Step 1
Multiply [abc0][0ixy][abc0][0ixy].
Tap for more steps...
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×22×2.
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
[a0+bxai+byc0+0xci+0y]=[0iz0][a0+bxai+byc0+0xci+0y]=[0iz0]
Step 1.3
Simplify each element of the matrix by multiplying out all the expressions.
[bxai+by0ci]=[0iz0][bxai+by0ci]=[0iz0]
[bxai+by0ci]=[0iz0][bxai+by0ci]=[0iz0]
Step 2
Write as a linear system of equations.
bx=0bx=0
ai+by=iai+by=i
0=z0=z
ci=0ci=0
Step 3
Solve the system of equations.
Tap for more steps...
Step 3.1
Rewrite the equation as z=0z=0.
z=0z=0
Step 3.2
Divide each term in ci=0ci=0 by ii and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in ci=0ci=0 by ii.
cii=0icii=0i
bx=0bx=0
ai+by=iai+by=i
z=0z=0
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of ii.
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
cii=0i
bx=0
ai+by=i
z=0
Step 3.2.2.1.2
Divide c by 1.
c=0i
bx=0
ai+by=i
z=0
c=0i
bx=0
ai+by=i
z=0
c=0i
bx=0
ai+by=i
z=0
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Multiply the numerator and denominator of 0i by the conjugate of i to make the denominator real.
c=0iii
bx=0
ai+by=i
z=0
Step 3.2.3.2
Multiply.
Tap for more steps...
Step 3.2.3.2.1
Combine.
c=0iii
bx=0
ai+by=i
z=0
Step 3.2.3.2.2
Multiply 0 by i.
c=0ii
bx=0
ai+by=i
z=0
Step 3.2.3.2.3
Simplify the denominator.
Tap for more steps...
Step 3.2.3.2.3.1
Raise i to the power of 1.
c=0ii
bx=0
ai+by=i
z=0
Step 3.2.3.2.3.2
Raise i to the power of 1.
c=0ii
bx=0
ai+by=i
z=0
Step 3.2.3.2.3.3
Use the power rule aman=am+n to combine exponents.
c=0i1+1
bx=0
ai+by=i
z=0
Step 3.2.3.2.3.4
Add 1 and 1.
c=0i2
bx=0
ai+by=i
z=0
Step 3.2.3.2.3.5
Rewrite i2 as -1.
c=0-1
bx=0
ai+by=i
z=0
c=0-1
bx=0
ai+by=i
z=0
c=0-1
bx=0
ai+by=i
z=0
Step 3.2.3.3
Divide 0 by -1.
c=0
bx=0
ai+by=i
z=0
c=0
bx=0
ai+by=i
z=0
c=0
bx=0
ai+by=i
z=0
Step 3.3
Simplify the left side.
Tap for more steps...
Step 3.3.1
Reorder ai and by.
by+ai=i,c=0,bx=0,z=0
by+ai=i,c=0,bx=0,z=0
by+ai=i,c=0,bx=0,z=0
 [x2  12  π  xdx ]