Enter a problem...
Linear Algebra Examples
[310142022][xyz]=[92714]
Step 1
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
[3x+1y+0z1x+4y+2z0x+2y+2z]=[92714]
Step 1.3
Simplify each element of the matrix by multiplying out all the expressions.
[3x+yx+4y+2z2y+2z]=[92714]
[3x+yx+4y+2z2y+2z]=[92714]
Step 2
Write as a linear system of equations.
3x+y=9
x+4y+2z=27
2y+2z=14
Step 3
Step 3.1
Subtract 3x from both sides of the equation.
y=9-3x
x+4y+2z=27
2y+2z=14
Step 3.2
Replace all occurrences of y with 9-3x in each equation.
Step 3.2.1
Replace all occurrences of y in x+4y+2z=27 with 9-3x.
x+4(9-3x)+2z=27
y=9-3x
2y+2z=14
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Simplify x+4(9-3x)+2z.
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Apply the distributive property.
x+4⋅9+4(-3x)+2z=27
y=9-3x
2y+2z=14
Step 3.2.2.1.1.2
Multiply 4 by 9.
x+36+4(-3x)+2z=27
y=9-3x
2y+2z=14
Step 3.2.2.1.1.3
Multiply -3 by 4.
x+36-12x+2z=27
y=9-3x
2y+2z=14
x+36-12x+2z=27
y=9-3x
2y+2z=14
Step 3.2.2.1.2
Subtract 12x from x.
-11x+36+2z=27
y=9-3x
2y+2z=14
-11x+36+2z=27
y=9-3x
2y+2z=14
-11x+36+2z=27
y=9-3x
2y+2z=14
Step 3.2.3
Replace all occurrences of y in 2y+2z=14 with 9-3x.
2(9-3x)+2z=14
-11x+36+2z=27
y=9-3x
Step 3.2.4
Simplify the left side.
Step 3.2.4.1
Simplify each term.
Step 3.2.4.1.1
Apply the distributive property.
2⋅9+2(-3x)+2z=14
-11x+36+2z=27
y=9-3x
Step 3.2.4.1.2
Multiply 2 by 9.
18+2(-3x)+2z=14
-11x+36+2z=27
y=9-3x
Step 3.2.4.1.3
Multiply -3 by 2.
18-6x+2z=14
-11x+36+2z=27
y=9-3x
18-6x+2z=14
-11x+36+2z=27
y=9-3x
18-6x+2z=14
-11x+36+2z=27
y=9-3x
18-6x+2z=14
-11x+36+2z=27
y=9-3x
Step 3.3
Reorder 9 and -3x.
y=-3x+9
18-6x+2z=14
-11x+36+2z=27
Step 3.4
Solve for x in 18-6x+2z=14.
Step 3.4.1
Move all terms not containing x to the right side of the equation.
Step 3.4.1.1
Subtract 18 from both sides of the equation.
-6x+2z=14-18
y=-3x+9
-11x+36+2z=27
Step 3.4.1.2
Subtract 2z from both sides of the equation.
-6x=14-18-2z
y=-3x+9
-11x+36+2z=27
Step 3.4.1.3
Subtract 18 from 14.
-6x=-4-2z
y=-3x+9
-11x+36+2z=27
-6x=-4-2z
y=-3x+9
-11x+36+2z=27
Step 3.4.2
Divide each term in -6x=-4-2z by -6 and simplify.
Step 3.4.2.1
Divide each term in -6x=-4-2z by -6.
-6x-6=-4-6+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Cancel the common factor of -6.
Step 3.4.2.2.1.1
Cancel the common factor.
-6x-6=-4-6+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.2.1.2
Divide x by 1.
x=-4-6+-2z-6
y=-3x+9
-11x+36+2z=27
x=-4-6+-2z-6
y=-3x+9
-11x+36+2z=27
x=-4-6+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Simplify each term.
Step 3.4.2.3.1.1
Cancel the common factor of -4 and -6.
Step 3.4.2.3.1.1.1
Factor -2 out of -4.
x=-2⋅2-6+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.1.2
Cancel the common factors.
Step 3.4.2.3.1.1.2.1
Factor -2 out of -6.
x=-2⋅2-2⋅3+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.1.2.2
Cancel the common factor.
x=-2⋅2-2⋅3+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.1.2.3
Rewrite the expression.
x=23+-2z-6
y=-3x+9
-11x+36+2z=27
x=23+-2z-6
y=-3x+9
-11x+36+2z=27
x=23+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.2
Cancel the common factor of -2 and -6.
Step 3.4.2.3.1.2.1
Factor -2 out of -2z.
x=23+-2z-6
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.2.2
Cancel the common factors.
Step 3.4.2.3.1.2.2.1
Factor -2 out of -6.
x=23+-2z-2⋅3
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.2.2.2
Cancel the common factor.
x=23+-2z-2⋅3
y=-3x+9
-11x+36+2z=27
Step 3.4.2.3.1.2.2.3
Rewrite the expression.
x=23+z3
y=-3x+9
-11x+36+2z=27
x=23+z3
y=-3x+9
-11x+36+2z=27
x=23+z3
y=-3x+9
-11x+36+2z=27
x=23+z3
y=-3x+9
-11x+36+2z=27
x=23+z3
y=-3x+9
-11x+36+2z=27
x=23+z3
y=-3x+9
-11x+36+2z=27
x=23+z3
y=-3x+9
-11x+36+2z=27
Step 3.5
Replace all occurrences of x with 23+z3 in each equation.
Step 3.5.1
Replace all occurrences of x in y=-3x+9 with 23+z3.
y=-3(23+z3)+9
x=23+z3
-11x+36+2z=27
Step 3.5.2
Simplify the right side.
Step 3.5.2.1
Simplify -3(23+z3)+9.
Step 3.5.2.1.1
Simplify each term.
Step 3.5.2.1.1.1
Apply the distributive property.
y=-3(23)-3z3+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.2
Cancel the common factor of 3.
Step 3.5.2.1.1.2.1
Factor 3 out of -3.
y=3(-1)(23)-3z3+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.2.2
Cancel the common factor.
y=3⋅(-1(23))-3z3+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.2.3
Rewrite the expression.
y=-1⋅2-3z3+9
x=23+z3
-11x+36+2z=27
y=-1⋅2-3z3+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.3
Multiply -1 by 2.
y=-2-3z3+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.4
Cancel the common factor of 3.
Step 3.5.2.1.1.4.1
Factor 3 out of -3.
y=-2+3(-1)(z3)+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.4.2
Cancel the common factor.
y=-2+3⋅(-1z3)+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.4.3
Rewrite the expression.
y=-2-1z+9
x=23+z3
-11x+36+2z=27
y=-2-1z+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.1.5
Rewrite -1z as -z.
y=-2-z+9
x=23+z3
-11x+36+2z=27
y=-2-z+9
x=23+z3
-11x+36+2z=27
Step 3.5.2.1.2
Add -2 and 9.
y=-z+7
x=23+z3
-11x+36+2z=27
y=-z+7
x=23+z3
-11x+36+2z=27
y=-z+7
x=23+z3
-11x+36+2z=27
Step 3.5.3
Replace all occurrences of x in -11x+36+2z=27 with 23+z3.
-11(23+z3)+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4
Simplify the left side.
Step 3.5.4.1
Simplify -11(23+z3)+36+2z.
Step 3.5.4.1.1
Simplify each term.
Step 3.5.4.1.1.1
Apply the distributive property.
-11(23)-11z3+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.1.2
Multiply -11(23).
Step 3.5.4.1.1.2.1
Combine -11 and 23.
-11⋅23-11z3+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.1.2.2
Multiply -11 by 2.
-223-11z3+36+2z=27
y=-z+7
x=23+z3
-223-11z3+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.1.3
Combine -11 and z3.
-223+-11z3+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.1.4
Simplify each term.
Step 3.5.4.1.1.4.1
Move the negative in front of the fraction.
-223+-11z3+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.1.4.2
Move the negative in front of the fraction.
-223-11z3+36+2z=27
y=-z+7
x=23+z3
-223-11z3+36+2z=27
y=-z+7
x=23+z3
-223-11z3+36+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.2
To write 36 as a fraction with a common denominator, multiply by 33.
-11z3-223+36⋅33+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.3
Combine 36 and 33.
-11z3-223+36⋅33+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.4
Combine the numerators over the common denominator.
-11z3+-22+36⋅33+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.5
Simplify the numerator.
Step 3.5.4.1.5.1
Multiply 36 by 3.
-11z3+-22+1083+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.5.2
Add -22 and 108.
-11z3+863+2z=27
y=-z+7
x=23+z3
-11z3+863+2z=27
y=-z+7
x=23+z3
Step 3.5.4.1.6
To write 2z as a fraction with a common denominator, multiply by 33.
-11z3+2z⋅33+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.7
Combine 2z and 33.
-11z3+2z⋅33+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.8
Combine the numerators over the common denominator.
-11z+2z⋅33+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.9
Combine the numerators over the common denominator.
-11z+2z⋅3+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.10
Multiply 3 by 2.
-11z+6z+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.11
Add -11z and 6z.
-5z+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.12
Factor -1 out of -5z.
-(5z)+863=27
y=-z+7
x=23+z3
Step 3.5.4.1.13
Rewrite 86 as -1(-86).
-(5z)-1⋅-863=27
y=-z+7
x=23+z3
Step 3.5.4.1.14
Factor -1 out of -(5z)-1(-86).
-(5z-86)3=27
y=-z+7
x=23+z3
Step 3.5.4.1.15
Simplify the expression.
Step 3.5.4.1.15.1
Rewrite -(5z-86) as -1(5z-86).
-1(5z-86)3=27
y=-z+7
x=23+z3
Step 3.5.4.1.15.2
Move the negative in front of the fraction.
-5z-863=27
y=-z+7
x=23+z3
-5z-863=27
y=-z+7
x=23+z3
-5z-863=27
y=-z+7
x=23+z3
-5z-863=27
y=-z+7
x=23+z3
-5z-863=27
y=-z+7
x=23+z3
Step 3.6
Solve for z in -5z-863=27.
Step 3.6.1
Multiply both sides of the equation by -3.
-3(-5z-863)=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2
Simplify both sides of the equation.
Step 3.6.2.1
Simplify the left side.
Step 3.6.2.1.1
Simplify -3(-5z-863).
Step 3.6.2.1.1.1
Cancel the common factor of 3.
Step 3.6.2.1.1.1.1
Move the leading negative in -5z-863 into the numerator.
-3-(5z-86)3=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2.1.1.1.2
Factor 3 out of -3.
3(-1)(-(5z-86)3)=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2.1.1.1.3
Cancel the common factor.
3⋅(-1-(5z-86)3)=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2.1.1.1.4
Rewrite the expression.
5z-86=-3⋅27
y=-z+7
x=23+z3
5z-86=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2.1.1.2
Multiply.
Step 3.6.2.1.1.2.1
Multiply -1 by -1.
1(5z-86)=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2.1.1.2.2
Multiply 5z-86 by 1.
5z-86=-3⋅27
y=-z+7
x=23+z3
5z-86=-3⋅27
y=-z+7
x=23+z3
5z-86=-3⋅27
y=-z+7
x=23+z3
5z-86=-3⋅27
y=-z+7
x=23+z3
Step 3.6.2.2
Simplify the right side.
Step 3.6.2.2.1
Multiply -3 by 27.
5z-86=-81
y=-z+7
x=23+z3
5z-86=-81
y=-z+7
x=23+z3
5z-86=-81
y=-z+7
x=23+z3
Step 3.6.3
Move all terms not containing z to the right side of the equation.
Step 3.6.3.1
Add 86 to both sides of the equation.
5z=-81+86
y=-z+7
x=23+z3
Step 3.6.3.2
Add -81 and 86.
5z=5
y=-z+7
x=23+z3
5z=5
y=-z+7
x=23+z3
Step 3.6.4
Divide each term in 5z=5 by 5 and simplify.
Step 3.6.4.1
Divide each term in 5z=5 by 5.
5z5=55
y=-z+7
x=23+z3
Step 3.6.4.2
Simplify the left side.
Step 3.6.4.2.1
Cancel the common factor of 5.
Step 3.6.4.2.1.1
Cancel the common factor.
5z5=55
y=-z+7
x=23+z3
Step 3.6.4.2.1.2
Divide z by 1.
z=55
y=-z+7
x=23+z3
z=55
y=-z+7
x=23+z3
z=55
y=-z+7
x=23+z3
Step 3.6.4.3
Simplify the right side.
Step 3.6.4.3.1
Divide 5 by 5.
z=1
y=-z+7
x=23+z3
z=1
y=-z+7
x=23+z3
z=1
y=-z+7
x=23+z3
z=1
y=-z+7
x=23+z3
Step 3.7
Replace all occurrences of z with 1 in each equation.
Step 3.7.1
Replace all occurrences of z in y=-z+7 with 1.
y=-(1)+7
z=1
x=23+z3
Step 3.7.2
Simplify the right side.
Step 3.7.2.1
Simplify -(1)+7.
Step 3.7.2.1.1
Multiply -1 by 1.
y=-1+7
z=1
x=23+z3
Step 3.7.2.1.2
Add -1 and 7.
y=6
z=1
x=23+z3
y=6
z=1
x=23+z3
y=6
z=1
x=23+z3
Step 3.7.3
Replace all occurrences of z in x=23+z3 with 1.
x=23+13
y=6
z=1
Step 3.7.4
Simplify the right side.
Step 3.7.4.1
Simplify 23+13.
Step 3.7.4.1.1
Combine the numerators over the common denominator.
x=2+13
y=6
z=1
Step 3.7.4.1.2
Simplify the expression.
Step 3.7.4.1.2.1
Add 2 and 1.
x=33
y=6
z=1
Step 3.7.4.1.2.2
Divide 3 by 3.
x=1
y=6
z=1
x=1
y=6
z=1
x=1
y=6
z=1
x=1
y=6
z=1
x=1
y=6
z=1
Step 3.8
List all of the solutions.
x=1,y=6,z=1
x=1,y=6,z=1