Enter a problem...
Linear Algebra Examples
a[1-2]+b[3-2]=[-21]a[1−2]+b[3−2]=[−21]
Step 1
Step 1.1
Multiply aa by each element of the matrix.
[a⋅1a⋅-2]+b[3-2]=[-21][a⋅1a⋅−2]+b[3−2]=[−21]
Step 1.2
Simplify each element in the matrix.
Step 1.2.1
Multiply aa by 11.
[aa⋅-2]+b[3-2]=[-21][aa⋅−2]+b[3−2]=[−21]
Step 1.2.2
Move -2−2 to the left of aa.
[a-2a]+b[3-2]=[-21][a−2a]+b[3−2]=[−21]
[a-2a]+b[3-2]=[-21][a−2a]+b[3−2]=[−21]
Step 1.3
Multiply bb by each element of the matrix.
[a-2a]+[b⋅3b⋅-2]=[-21][a−2a]+[b⋅3b⋅−2]=[−21]
Step 1.4
Simplify each element in the matrix.
Step 1.4.1
Move 33 to the left of bb.
[a-2a]+[3bb⋅-2]=[-21][a−2a]+[3bb⋅−2]=[−21]
Step 1.4.2
Move -2−2 to the left of bb.
[a-2a]+[3b-2b]=[-21][a−2a]+[3b−2b]=[−21]
[a-2a]+[3b-2b]=[-21][a−2a]+[3b−2b]=[−21]
[a-2a]+[3b-2b]=[-21][a−2a]+[3b−2b]=[−21]
Step 2
Add the corresponding elements.
[a+3b-2a-2b]=[-21][a+3b−2a−2b]=[−21]
Step 3
Write as a linear system of equations.
a+3b=-2a+3b=−2
-2a-2b=1−2a−2b=1
Step 4
Step 4.1
Subtract 3b3b from both sides of the equation.
a=-2-3ba=−2−3b
-2a-2b=1−2a−2b=1
Step 4.2
Replace all occurrences of aa with -2-3b−2−3b in each equation.
Step 4.2.1
Replace all occurrences of aa in -2a-2b=1−2a−2b=1 with -2-3b−2−3b.
-2(-2-3b)-2b=1−2(−2−3b)−2b=1
a=-2-3ba=−2−3b
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Simplify -2(-2-3b)-2b−2(−2−3b)−2b.
Step 4.2.2.1.1
Simplify each term.
Step 4.2.2.1.1.1
Apply the distributive property.
-2⋅-2-2(-3b)-2b=1−2⋅−2−2(−3b)−2b=1
a=-2-3ba=−2−3b
Step 4.2.2.1.1.2
Multiply -2−2 by -2−2.
4-2(-3b)-2b=14−2(−3b)−2b=1
a=-2-3ba=−2−3b
Step 4.2.2.1.1.3
Multiply -3−3 by -2−2.
4+6b-2b=14+6b−2b=1
a=-2-3ba=−2−3b
4+6b-2b=14+6b−2b=1
a=-2-3ba=−2−3b
Step 4.2.2.1.2
Subtract 2b2b from 6b6b.
4+4b=14+4b=1
a=-2-3ba=−2−3b
4+4b=14+4b=1
a=-2-3ba=−2−3b
4+4b=14+4b=1
a=-2-3ba=−2−3b
4+4b=14+4b=1
a=-2-3ba=−2−3b
Step 4.3
Solve for bb in 4+4b=14+4b=1.
Step 4.3.1
Move all terms not containing bb to the right side of the equation.
Step 4.3.1.1
Subtract 44 from both sides of the equation.
4b=1-44b=1−4
a=-2-3ba=−2−3b
Step 4.3.1.2
Subtract 44 from 11.
4b=-34b=−3
a=-2-3ba=−2−3b
4b=-34b=−3
a=-2-3ba=−2−3b
Step 4.3.2
Divide each term in 4b=-34b=−3 by 44 and simplify.
Step 4.3.2.1
Divide each term in 4b=-34b=−3 by 44.
4b4=-344b4=−34
a=-2-3ba=−2−3b
Step 4.3.2.2
Simplify the left side.
Step 4.3.2.2.1
Cancel the common factor of 44.
Step 4.3.2.2.1.1
Cancel the common factor.
4b4=-34
a=-2-3b
Step 4.3.2.2.1.2
Divide b by 1.
b=-34
a=-2-3b
b=-34
a=-2-3b
b=-34
a=-2-3b
Step 4.3.2.3
Simplify the right side.
Step 4.3.2.3.1
Move the negative in front of the fraction.
b=-34
a=-2-3b
b=-34
a=-2-3b
b=-34
a=-2-3b
b=-34
a=-2-3b
Step 4.4
Replace all occurrences of b with -34 in each equation.
Step 4.4.1
Replace all occurrences of b in a=-2-3b with -34.
a=-2-3(-34)
b=-34
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify -2-3(-34).
Step 4.4.2.1.1
Multiply -3(-34).
Step 4.4.2.1.1.1
Multiply -1 by -3.
a=-2+3(34)
b=-34
Step 4.4.2.1.1.2
Combine 3 and 34.
a=-2+3⋅34
b=-34
Step 4.4.2.1.1.3
Multiply 3 by 3.
a=-2+94
b=-34
a=-2+94
b=-34
Step 4.4.2.1.2
To write -2 as a fraction with a common denominator, multiply by 44.
a=-2⋅44+94
b=-34
Step 4.4.2.1.3
Combine -2 and 44.
a=-2⋅44+94
b=-34
Step 4.4.2.1.4
Combine the numerators over the common denominator.
a=-2⋅4+94
b=-34
Step 4.4.2.1.5
Simplify the numerator.
Step 4.4.2.1.5.1
Multiply -2 by 4.
a=-8+94
b=-34
Step 4.4.2.1.5.2
Add -8 and 9.
a=14
b=-34
a=14
b=-34
a=14
b=-34
a=14
b=-34
a=14
b=-34
Step 4.5
List all of the solutions.
a=14,b=-34
a=14,b=-34