Linear Algebra Examples

Solve the Matrix Equation a[[1],[-2]]+b[[3],[-2]]=[[-2],[1]]
a[1-2]+b[3-2]=[-21]a[12]+b[32]=[21]
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Multiply aa by each element of the matrix.
[a1a-2]+b[3-2]=[-21][a1a2]+b[32]=[21]
Step 1.2
Simplify each element in the matrix.
Tap for more steps...
Step 1.2.1
Multiply aa by 11.
[aa-2]+b[3-2]=[-21][aa2]+b[32]=[21]
Step 1.2.2
Move -22 to the left of aa.
[a-2a]+b[3-2]=[-21][a2a]+b[32]=[21]
[a-2a]+b[3-2]=[-21][a2a]+b[32]=[21]
Step 1.3
Multiply bb by each element of the matrix.
[a-2a]+[b3b-2]=[-21][a2a]+[b3b2]=[21]
Step 1.4
Simplify each element in the matrix.
Tap for more steps...
Step 1.4.1
Move 33 to the left of bb.
[a-2a]+[3bb-2]=[-21][a2a]+[3bb2]=[21]
Step 1.4.2
Move -22 to the left of bb.
[a-2a]+[3b-2b]=[-21][a2a]+[3b2b]=[21]
[a-2a]+[3b-2b]=[-21][a2a]+[3b2b]=[21]
[a-2a]+[3b-2b]=[-21][a2a]+[3b2b]=[21]
Step 2
Add the corresponding elements.
[a+3b-2a-2b]=[-21][a+3b2a2b]=[21]
Step 3
Write as a linear system of equations.
a+3b=-2a+3b=2
-2a-2b=12a2b=1
Step 4
Solve the system of equations.
Tap for more steps...
Step 4.1
Subtract 3b3b from both sides of the equation.
a=-2-3ba=23b
-2a-2b=12a2b=1
Step 4.2
Replace all occurrences of aa with -2-3b23b in each equation.
Tap for more steps...
Step 4.2.1
Replace all occurrences of aa in -2a-2b=12a2b=1 with -2-3b23b.
-2(-2-3b)-2b=12(23b)2b=1
a=-2-3ba=23b
Step 4.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.1
Simplify -2(-2-3b)-2b2(23b)2b.
Tap for more steps...
Step 4.2.2.1.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1.1
Apply the distributive property.
-2-2-2(-3b)-2b=1222(3b)2b=1
a=-2-3ba=23b
Step 4.2.2.1.1.2
Multiply -22 by -22.
4-2(-3b)-2b=142(3b)2b=1
a=-2-3ba=23b
Step 4.2.2.1.1.3
Multiply -33 by -22.
4+6b-2b=14+6b2b=1
a=-2-3ba=23b
4+6b-2b=14+6b2b=1
a=-2-3ba=23b
Step 4.2.2.1.2
Subtract 2b2b from 6b6b.
4+4b=14+4b=1
a=-2-3ba=23b
4+4b=14+4b=1
a=-2-3ba=23b
4+4b=14+4b=1
a=-2-3ba=23b
4+4b=14+4b=1
a=-2-3ba=23b
Step 4.3
Solve for bb in 4+4b=14+4b=1.
Tap for more steps...
Step 4.3.1
Move all terms not containing bb to the right side of the equation.
Tap for more steps...
Step 4.3.1.1
Subtract 44 from both sides of the equation.
4b=1-44b=14
a=-2-3ba=23b
Step 4.3.1.2
Subtract 44 from 11.
4b=-34b=3
a=-2-3ba=23b
4b=-34b=3
a=-2-3ba=23b
Step 4.3.2
Divide each term in 4b=-34b=3 by 44 and simplify.
Tap for more steps...
Step 4.3.2.1
Divide each term in 4b=-34b=3 by 44.
4b4=-344b4=34
a=-2-3ba=23b
Step 4.3.2.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.2.1
Cancel the common factor of 44.
Tap for more steps...
Step 4.3.2.2.1.1
Cancel the common factor.
4b4=-34
a=-2-3b
Step 4.3.2.2.1.2
Divide b by 1.
b=-34
a=-2-3b
b=-34
a=-2-3b
b=-34
a=-2-3b
Step 4.3.2.3
Simplify the right side.
Tap for more steps...
Step 4.3.2.3.1
Move the negative in front of the fraction.
b=-34
a=-2-3b
b=-34
a=-2-3b
b=-34
a=-2-3b
b=-34
a=-2-3b
Step 4.4
Replace all occurrences of b with -34 in each equation.
Tap for more steps...
Step 4.4.1
Replace all occurrences of b in a=-2-3b with -34.
a=-2-3(-34)
b=-34
Step 4.4.2
Simplify the right side.
Tap for more steps...
Step 4.4.2.1
Simplify -2-3(-34).
Tap for more steps...
Step 4.4.2.1.1
Multiply -3(-34).
Tap for more steps...
Step 4.4.2.1.1.1
Multiply -1 by -3.
a=-2+3(34)
b=-34
Step 4.4.2.1.1.2
Combine 3 and 34.
a=-2+334
b=-34
Step 4.4.2.1.1.3
Multiply 3 by 3.
a=-2+94
b=-34
a=-2+94
b=-34
Step 4.4.2.1.2
To write -2 as a fraction with a common denominator, multiply by 44.
a=-244+94
b=-34
Step 4.4.2.1.3
Combine -2 and 44.
a=-244+94
b=-34
Step 4.4.2.1.4
Combine the numerators over the common denominator.
a=-24+94
b=-34
Step 4.4.2.1.5
Simplify the numerator.
Tap for more steps...
Step 4.4.2.1.5.1
Multiply -2 by 4.
a=-8+94
b=-34
Step 4.4.2.1.5.2
Add -8 and 9.
a=14
b=-34
a=14
b=-34
a=14
b=-34
a=14
b=-34
a=14
b=-34
Step 4.5
List all of the solutions.
a=14,b=-34
a=14,b=-34
 [x2  12  π  xdx ]