Enter a problem...
Linear Algebra Examples
(√13)2+(√23)2+√(13)2
Step 1
Step 1.1
Rewrite √13 as √1√3.
(√1√3)2+(√23)2+√(13)2
Step 1.2
Any root of 1 is 1.
(1√3)2+(√23)2+√(13)2
Step 1.3
Multiply 1√3 by √3√3.
(1√3⋅√3√3)2+(√23)2+√(13)2
Step 1.4
Combine and simplify the denominator.
Step 1.4.1
Multiply 1√3 by √3√3.
(√3√3√3)2+(√23)2+√(13)2
Step 1.4.2
Raise √3 to the power of 1.
(√3√31√3)2+(√23)2+√(13)2
Step 1.4.3
Raise √3 to the power of 1.
(√3√31√31)2+(√23)2+√(13)2
Step 1.4.4
Use the power rule aman=am+n to combine exponents.
(√3√31+1)2+(√23)2+√(13)2
Step 1.4.5
Add 1 and 1.
(√3√32)2+(√23)2+√(13)2
Step 1.4.6
Rewrite √32 as 3.
Step 1.4.6.1
Use n√ax=axn to rewrite √3 as 312.
(√3(312)2)2+(√23)2+√(13)2
Step 1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
(√3312⋅2)2+(√23)2+√(13)2
Step 1.4.6.3
Combine 12 and 2.
(√3322)2+(√23)2+√(13)2
Step 1.4.6.4
Cancel the common factor of 2.
Step 1.4.6.4.1
Cancel the common factor.
(√3322)2+(√23)2+√(13)2
Step 1.4.6.4.2
Rewrite the expression.
(√331)2+(√23)2+√(13)2
(√331)2+(√23)2+√(13)2
Step 1.4.6.5
Evaluate the exponent.
(√33)2+(√23)2+√(13)2
(√33)2+(√23)2+√(13)2
(√33)2+(√23)2+√(13)2
Step 1.5
Apply the product rule to √33.
√3232+(√23)2+√(13)2
Step 1.6
Rewrite √32 as 3.
Step 1.6.1
Use n√ax=axn to rewrite √3 as 312.
(312)232+(√23)2+√(13)2
Step 1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
312⋅232+(√23)2+√(13)2
Step 1.6.3
Combine 12 and 2.
32232+(√23)2+√(13)2
Step 1.6.4
Cancel the common factor of 2.
Step 1.6.4.1
Cancel the common factor.
32232+(√23)2+√(13)2
Step 1.6.4.2
Rewrite the expression.
3132+(√23)2+√(13)2
3132+(√23)2+√(13)2
Step 1.6.5
Evaluate the exponent.
332+(√23)2+√(13)2
332+(√23)2+√(13)2
Step 1.7
Raise 3 to the power of 2.
39+(√23)2+√(13)2
Step 1.8
Cancel the common factor of 3 and 9.
Step 1.8.1
Factor 3 out of 3.
3(1)9+(√23)2+√(13)2
Step 1.8.2
Cancel the common factors.
Step 1.8.2.1
Factor 3 out of 9.
3⋅13⋅3+(√23)2+√(13)2
Step 1.8.2.2
Cancel the common factor.
3⋅13⋅3+(√23)2+√(13)2
Step 1.8.2.3
Rewrite the expression.
13+(√23)2+√(13)2
13+(√23)2+√(13)2
13+(√23)2+√(13)2
Step 1.9
Rewrite √23 as √2√3.
13+(√2√3)2+√(13)2
Step 1.10
Multiply √2√3 by √3√3.
13+(√2√3⋅√3√3)2+√(13)2
Step 1.11
Combine and simplify the denominator.
Step 1.11.1
Multiply √2√3 by √3√3.
13+(√2√3√3√3)2+√(13)2
Step 1.11.2
Raise √3 to the power of 1.
13+(√2√3√31√3)2+√(13)2
Step 1.11.3
Raise √3 to the power of 1.
13+(√2√3√31√31)2+√(13)2
Step 1.11.4
Use the power rule aman=am+n to combine exponents.
13+(√2√3√31+1)2+√(13)2
Step 1.11.5
Add 1 and 1.
13+(√2√3√32)2+√(13)2
Step 1.11.6
Rewrite √32 as 3.
Step 1.11.6.1
Use n√ax=axn to rewrite √3 as 312.
13+(√2√3(312)2)2+√(13)2
Step 1.11.6.2
Apply the power rule and multiply exponents, (am)n=amn.
13+(√2√3312⋅2)2+√(13)2
Step 1.11.6.3
Combine 12 and 2.
13+(√2√3322)2+√(13)2
Step 1.11.6.4
Cancel the common factor of 2.
Step 1.11.6.4.1
Cancel the common factor.
13+(√2√3322)2+√(13)2
Step 1.11.6.4.2
Rewrite the expression.
13+(√2√331)2+√(13)2
13+(√2√331)2+√(13)2
Step 1.11.6.5
Evaluate the exponent.
13+(√2√33)2+√(13)2
13+(√2√33)2+√(13)2
13+(√2√33)2+√(13)2
Step 1.12
Simplify the numerator.
Step 1.12.1
Combine using the product rule for radicals.
13+(√2⋅33)2+√(13)2
Step 1.12.2
Multiply 2 by 3.
13+(√63)2+√(13)2
13+(√63)2+√(13)2
Step 1.13
Apply the product rule to √63.
13+√6232+√(13)2
Step 1.14
Rewrite √62 as 6.
Step 1.14.1
Use n√ax=axn to rewrite √6 as 612.
13+(612)232+√(13)2
Step 1.14.2
Apply the power rule and multiply exponents, (am)n=amn.
13+612⋅232+√(13)2
Step 1.14.3
Combine 12 and 2.
13+62232+√(13)2
Step 1.14.4
Cancel the common factor of 2.
Step 1.14.4.1
Cancel the common factor.
13+62232+√(13)2
Step 1.14.4.2
Rewrite the expression.
13+6132+√(13)2
13+6132+√(13)2
Step 1.14.5
Evaluate the exponent.
13+632+√(13)2
13+632+√(13)2
Step 1.15
Raise 3 to the power of 2.
13+69+√(13)2
Step 1.16
Cancel the common factor of 6 and 9.
Step 1.16.1
Factor 3 out of 6.
13+3(2)9+√(13)2
Step 1.16.2
Cancel the common factors.
Step 1.16.2.1
Factor 3 out of 9.
13+3⋅23⋅3+√(13)2
Step 1.16.2.2
Cancel the common factor.
13+3⋅23⋅3+√(13)2
Step 1.16.2.3
Rewrite the expression.
13+23+√(13)2
13+23+√(13)2
13+23+√(13)2
Step 1.17
Pull terms out from under the radical, assuming positive real numbers.
13+23+13
13+23+13
Step 2
Step 2.1
Combine the numerators over the common denominator.
1+2+13
Step 2.2
Simplify by adding numbers.
Step 2.2.1
Add 1 and 2.
3+13
Step 2.2.2
Add 3 and 1.
43
43
43
Step 3
The result can be shown in multiple forms.
Exact Form:
43
Decimal Form:
1.‾3
Mixed Number Form:
113