Linear Algebra Examples

Solve Using an Inverse Matrix 2x+y=-5 , 6y+32z=-46 , -7x-2y+8z=6
2x+y=-52x+y=5 , 6y+32z=-46 , -7x-2y+8z=6
Step 1
Find the AX=B from the system of equations.
[2100632-7-28][xyz]=[-5-466]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Set up a matrix that is broken into two pieces of equal size. On the left side, fill in the elements of the original matrix. On the right side, fill in elements of the identity matrix. In order to find the inverse matrix, use row operations to convert the left side into the identity matrix. After this is complete, the inverse of the original matrix will be on the right side of the double matrix.
[2101000632010-7-28001]
Exchange row 3 and row 2 to organize the zeros into position.
[210100-7-280010632010]
R3R
Perform the row operation R1=12R1 on R1 (row 1) in order to convert some elements in the row to 1.
Tap for more steps...
Replace R1 (row 1) with the row operation R1=12R1 in order to convert some elements in the row to the desired value 1.
[12R112R112R112R112R112R1-7-280010632010]
R1=12R1
Replace R1 (row 1) with the actual values of the elements for the row operation R1=12R1.
[(12)(2)(12)(1)(12)(0)(12)(1)(12)(0)(12)(0)-7-280010632010]
R1=12R1
Simplify R1 (row 1).
[11201200-7-280010632010]
[11201200-7-280010632010]
Perform the row operation R2=7R1+R2 on R2 (row 2) in order to convert some elements in the row to 0.
Tap for more steps...
Replace R2 (row 2) with the row operation R2=7R1+R2 in order to convert some elements in the row to the desired value 0.
[112012007R1+R27R1+R27R1+R27R1+R27R1+R27R1+R20632010]
R2=7R1+R2
Replace R2 (row 2) with the actual values of the elements for the row operation R2=7R1+R2.
[11201200(7)(1)-7(7)(12)-2(7)(0)+8(7)(12)+0(7)(0)+0(7)(0)+10632010]
R2=7R1+R2
Simplify R2 (row 2).
[11201200032872010632010]
[11201200032872010632010]
Perform the row operation R2=23R2 on R2 (row 2) in order to convert some elements in the row to 1.
Tap for more steps...
Replace R2 (row 2) with the row operation R2=23R2 in order to convert some elements in the row to the desired value 1.
[1120120023R223R223R223R223R223R20632010]
R2=23R2
Replace R2 (row 2) with the actual values of the elements for the row operation R2=23R2.
[11201200(23)(0)(23)(32)(23)(8)(23)(72)(23)(0)(23)(1)0632010]
R2=23R2
Simplify R2 (row 2).
[1120120001163730230632010]
[1120120001163730230632010]
Perform the row operation R1=-12R2+R1 on R1 (row 1) in order to convert some elements in the row to 0.
Tap for more steps...
Replace R1 (row 1) with the row operation R1=-12R2+R1 in order to convert some elements in the row to the desired value 0.
[-12R2+R1-12R2+R1-12R2+R1-12R2+R1-12R2+R1-12R2+R101163730230632010]
R1=-12R2+R1
Replace R1 (row 1) with the actual values of the elements for the row operation R1=-12R2+R1.
[(-12)(0)+1(-12)(1)+12(-12)(163)+0(-12)(73)+12(-12)(0)+0(-12)(23)+001163730230632010]
R1=-12R2+R1
Simplify R1 (row 1).
[10-83-230-1301163730230632010]
[10-83-230-1301163730230632010]
Perform the row operation R3=-6R2+R3 on R3 (row 3) in order to convert some elements in the row to 0.
Tap for more steps...
Replace R3 (row 3) with the row operation R3=-6R2+R3 in order to convert some elements in the row to the desired value 0.
[10-83-230-130116373023-6R2+R3-6R2+R3-6R2+R3-6R2+R3-6R2+R3-6R2+R3]
R3=-6R2+R3
Replace R3 (row 3) with the actual values of the elements for the row operation R3=-6R2+R3.
[10-83-230-130116373023(-6)(0)+0(-6)(1)+6(-6)(163)+32(-6)(73)+0(-6)(0)+1(-6)(23)+0]
R3=-6R2+R3
Simplify R3 (row 3).
[10-83-230-130116373023000-141-4]
[10-83-230-130116373023000-141-4]
Perform the row operation R3=-114R3 on R3 (row 3) in order to convert some elements in the row to 1.
Tap for more steps...
Replace R3 (row 3) with the row operation R3=-114R3 in order to convert some elements in the row to the desired value 1.
[10-83-230-130116373023-114R3-114R3-114R3-114R3-114R3-114R3]
R3=-114R3
Replace R3 (row 3) with the actual values of the elements for the row operation R3=-114R3.
[10-83-230-130116373023(-114)(0)(-114)(0)(-114)(0)(-114)(-14)(-114)(1)(-114)(-4)]
R3=-114R3
Simplify R3 (row 3).
[10-83-230-1301163730230001-11427]
[10-83-230-1301163730230001-11427]
Perform the row operation R1=23R3+R1 on R1 (row 1) in order to convert some elements in the row to 0.
Tap for more steps...
Replace R1 (row 1) with the row operation R1=23R3+R1 in order to convert some elements in the row to the desired value 0.
[23R3+R123R3+R123R3+R123R3+R123R3+R123R3+R101163730230001-11427]
R1=23R3+R1
Replace R1 (row 1) with the actual values of the elements for the row operation R1=23R3+R1.
[(23)(0)+1(23)(0)+0(23)(0)-83(23)(1)-23(23)(-114)+0(23)(27)-1301163730230001-11427]
R1=23R3+R1
Simplify R1 (row 1).
[10-830-121-1701163730230001-11427]
[10-830-121-1701163730230001-11427]
Perform the row operation R2=-73R3+R2 on R2 (row 2) in order to convert some elements in the row to 0.
Tap for more steps...
Replace R2 (row 2) with the row operation R2=-73R3+R2 in order to convert some elements in the row to the desired value 0.
[10-830-121-17-73R3+R2-73R3+R2-73R3+R2-73R3+R2-73R3+R2-73R3+R20001-11427]
R2=-73R3+R2
Replace R2 (row 2) with the actual values of the elements for the row operation R2=-73R3+R2.
[10-830-121-17(-73)(0)+0(-73)(0)+1(-73)(0)+163(-73)(1)+73(-73)(-114)+0(-73)(27)+230001-11427]
R2=-73R3+R2
Simplify R2 (row 2).
[10-830-121-170116301600001-11427]
[10-830-121-170116301600001-11427]
Since the determinant of the matrix is zero, there is no inverse.
No inverse
No inverse
Step 3
Since the matrix has no inverse, it cannot be solved using the inverse matrix.
No solution
 [x2  12  π  xdx ]