Linear Algebra Examples

Solve Using an Inverse Matrix 4x=-3y+3 , 7x=-3y+3
4x=-3y+3 , 7x=-3y+3
Step 1
Find the AX=B from the system of equations.

Step 2
The matrix must be a square matrix to find the inverse.
Inverse matrix cannot be found
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.

Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xy]=Inverse matrix cannot be found[33]
Step 5
Simplify the right side of the equation.
Tap for more steps...
Multiply Inverse(matrix)(cannot)(be)(found) by each element of the matrix.

Simplify each element in the matrix.
Tap for more steps...
Rearrange Inverse(matrix)(cannot)(be)(found)3.

Rearrange Inverse(matrix)(cannot)(be)(found)3.
[3In4ve3r2sma2t2ixco2bfud3In4ve3r2sma2t2ixco2bfud]
[3In4ve3r2sma2t2ixco2bfud3In4ve3r2sma2t2ixco2bfud]
[3In4ve3r2sma2t2ixco2bfud3In4ve3r2sma2t2ixco2bfud]
Step 6
Simplify the left and right side.
[xy]=[3In4ve3r2sma2t2ixco2bfud3In4ve3r2sma2t2ixco2bfud]
Step 7
Find the solution.
x=3In4ve3r2sma2t2ixco2bfud
y=3In4ve3r2sma2t2ixco2bfud
 [x2  12  π  xdx ]