Linear Algebra Examples

Solve Using an Inverse Matrix 9/2x+1/3y-z=-145 , 3x-7/3y+1/2z=49/3 , x+2y-z=-15
92x+13y-z=-14592x+13yz=145 , 3x-73y+12z=493 , x+2y-z=-15
Step 1
Find the AX=B from the system of equations.
[9213-13-731212-1][xyz]=[-145493-15]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
Find the determinant.
Tap for more steps...
Step 2.1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-73122-1|
Step 2.1.1.4
Multiply element a11 by its cofactor.
92|-73122-1|
Step 2.1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3121-1|
Step 2.1.1.6
Multiply element a12 by its cofactor.
-13|3121-1|
Step 2.1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-7312|
Step 2.1.1.8
Multiply element a13 by its cofactor.
-1|3-7312|
Step 2.1.1.9
Add the terms together.
92|-73122-1|-13|3121-1|-1|3-7312|
92|-73122-1|-13|3121-1|-1|3-7312|
Step 2.1.2
Evaluate |-73122-1|.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
92(-73-1-2(12))-13|3121-1|-1|3-7312|
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply -73-1.
Tap for more steps...
Step 2.1.2.2.1.1.1
Multiply -1 by -1.
92(1(73)-2(12))-13|3121-1|-1|3-7312|
Step 2.1.2.2.1.1.2
Multiply 73 by 1.
92(73-2(12))-13|3121-1|-1|3-7312|
92(73-2(12))-13|3121-1|-1|3-7312|
Step 2.1.2.2.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.2.2.1.2.1
Factor 2 out of -2.
92(73+2(-1)12)-13|3121-1|-1|3-7312|
Step 2.1.2.2.1.2.2
Cancel the common factor.
92(73+2-112)-13|3121-1|-1|3-7312|
Step 2.1.2.2.1.2.3
Rewrite the expression.
92(73-1)-13|3121-1|-1|3-7312|
92(73-1)-13|3121-1|-1|3-7312|
92(73-1)-13|3121-1|-1|3-7312|
Step 2.1.2.2.2
To write -1 as a fraction with a common denominator, multiply by 33.
92(73-133)-13|3121-1|-1|3-7312|
Step 2.1.2.2.3
Combine -1 and 33.
92(73+-133)-13|3121-1|-1|3-7312|
Step 2.1.2.2.4
Combine the numerators over the common denominator.
927-133-13|3121-1|-1|3-7312|
Step 2.1.2.2.5
Simplify the numerator.
Tap for more steps...
Step 2.1.2.2.5.1
Multiply -1 by 3.
927-33-13|3121-1|-1|3-7312|
Step 2.1.2.2.5.2
Subtract 3 from 7.
9243-13|3121-1|-1|3-7312|
9243-13|3121-1|-1|3-7312|
9243-13|3121-1|-1|3-7312|
9243-13|3121-1|-1|3-7312|
Step 2.1.3
Evaluate |3121-1|.
Tap for more steps...
Step 2.1.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
9243-13(3-1-12)-1|3-7312|
Step 2.1.3.2
Simplify the determinant.
Tap for more steps...
Step 2.1.3.2.1
Multiply 3 by -1.
9243-13(-3-12)-1|3-7312|
Step 2.1.3.2.2
To write -3 as a fraction with a common denominator, multiply by 22.
9243-13(-322-12)-1|3-7312|
Step 2.1.3.2.3
Combine -3 and 22.
9243-13(-322-12)-1|3-7312|
Step 2.1.3.2.4
Combine the numerators over the common denominator.
9243-13-32-12-1|3-7312|
Step 2.1.3.2.5
Simplify the numerator.
Tap for more steps...
Step 2.1.3.2.5.1
Multiply -3 by 2.
9243-13-6-12-1|3-7312|
Step 2.1.3.2.5.2
Subtract 1 from -6.
9243-13-72-1|3-7312|
9243-13-72-1|3-7312|
Step 2.1.3.2.6
Move the negative in front of the fraction.
9243-13(-72)-1|3-7312|
9243-13(-72)-1|3-7312|
9243-13(-72)-1|3-7312|
Step 2.1.4
Evaluate |3-7312|.
Tap for more steps...
Step 2.1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
9243-13(-72)-1(32--73)
Step 2.1.4.2
Simplify the determinant.
Tap for more steps...
Step 2.1.4.2.1
Simplify each term.
Tap for more steps...
Step 2.1.4.2.1.1
Multiply 3 by 2.
9243-13(-72)-1(6--73)
Step 2.1.4.2.1.2
Multiply --73.
Tap for more steps...
Step 2.1.4.2.1.2.1
Multiply -1 by -1.
9243-13(-72)-1(6+1(73))
Step 2.1.4.2.1.2.2
Multiply 73 by 1.
9243-13(-72)-1(6+73)
9243-13(-72)-1(6+73)
9243-13(-72)-1(6+73)
Step 2.1.4.2.2
To write 6 as a fraction with a common denominator, multiply by 33.
9243-13(-72)-1(633+73)
Step 2.1.4.2.3
Combine 6 and 33.
9243-13(-72)-1(633+73)
Step 2.1.4.2.4
Combine the numerators over the common denominator.
9243-13(-72)-163+73
Step 2.1.4.2.5
Simplify the numerator.
Tap for more steps...
Step 2.1.4.2.5.1
Multiply 6 by 3.
9243-13(-72)-118+73
Step 2.1.4.2.5.2
Add 18 and 7.
9243-13(-72)-1(253)
9243-13(-72)-1(253)
9243-13(-72)-1(253)
9243-13(-72)-1(253)
Step 2.1.5
Simplify the determinant.
Tap for more steps...
Step 2.1.5.1
Simplify each term.
Tap for more steps...
Step 2.1.5.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 2.1.5.1.1.1
Factor 3 out of 9.
3(3)243-13(-72)-1(253)
Step 2.1.5.1.1.2
Cancel the common factor.
33243-13(-72)-1(253)
Step 2.1.5.1.1.3
Rewrite the expression.
324-13(-72)-1(253)
324-13(-72)-1(253)
Step 2.1.5.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.5.1.2.1
Factor 2 out of 4.
32(2(2))-13(-72)-1(253)
Step 2.1.5.1.2.2
Cancel the common factor.
32(22)-13(-72)-1(253)
Step 2.1.5.1.2.3
Rewrite the expression.
32-13(-72)-1(253)
32-13(-72)-1(253)
Step 2.1.5.1.3
Multiply 3 by 2.
6-13(-72)-1(253)
Step 2.1.5.1.4
Multiply -13(-72).
Tap for more steps...
Step 2.1.5.1.4.1
Multiply -1 by -1.
6+1(13)72-1(253)
Step 2.1.5.1.4.2
Multiply 13 by 1.
6+1372-1(253)
Step 2.1.5.1.4.3
Multiply 13 by 72.
6+732-1(253)
Step 2.1.5.1.4.4
Multiply 3 by 2.
6+76-1(253)
6+76-1(253)
Step 2.1.5.1.5
Rewrite -1(253) as -(253).
6+76-253
6+76-253
Step 2.1.5.2
Find the common denominator.
Tap for more steps...
Step 2.1.5.2.1
Write 6 as a fraction with denominator 1.
61+76-253
Step 2.1.5.2.2
Multiply 61 by 66.
6166+76-253
Step 2.1.5.2.3
Multiply 61 by 66.
666+76-253
Step 2.1.5.2.4
Multiply 253 by 22.
666+76-(25322)
Step 2.1.5.2.5
Multiply 253 by 22.
666+76-25232
Step 2.1.5.2.6
Reorder the factors of 32.
666+76-25223
Step 2.1.5.2.7
Multiply 2 by 3.
666+76-2526
666+76-2526
Step 2.1.5.3
Combine the numerators over the common denominator.
66+7-2526
Step 2.1.5.4
Simplify each term.
Tap for more steps...
Step 2.1.5.4.1
Multiply 6 by 6.
36+7-2526
Step 2.1.5.4.2
Multiply -25 by 2.
36+7-506
36+7-506
Step 2.1.5.5
Add 36 and 7.
43-506
Step 2.1.5.6
Subtract 50 from 43.
-76
Step 2.1.5.7
Move the negative in front of the fraction.
-76
-76
-76
Step 2.2
Since the determinant is non-zero, the inverse exists.
Step 2.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[9213-11003-731201012-1001]
Step 2.4
Find the reduced row echelon form.
Tap for more steps...
Step 2.4.1
Multiply each element of R1 by 29 to make the entry at 1,1 a 1.
Tap for more steps...
Step 2.4.1.1
Multiply each element of R1 by 29 to make the entry at 1,1 a 1.
[2992291329-12912902903-731201012-1001]
Step 2.4.1.2
Simplify R1.
[1227-2929003-731201012-1001]
[1227-2929003-731201012-1001]
Step 2.4.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 2.4.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1227-2929003-31-73-3(227)12-3(-29)0-3(29)1-300-3012-1001]
Step 2.4.2.2
Simplify R2.
[1227-2929000-23976-231012-1001]
[1227-2929000-23976-231012-1001]
Step 2.4.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 2.4.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1227-2929000-23976-23101-12-227-1+290-290-01-0]
Step 2.4.3.2
Simplify R3.
[1227-2929000-23976-231005227-79-2901]
[1227-2929000-23976-231005227-79-2901]
Step 2.4.4
Multiply each element of R2 by -923 to make the entry at 2,2 a 1.
Tap for more steps...
Step 2.4.4.1
Multiply each element of R2 by -923 to make the entry at 2,2 a 1.
[1227-292900-9230-923(-239)-92376-923(-23)-9231-923005227-79-2901]
Step 2.4.4.2
Simplify R2.
[1227-29290001-2146623-923005227-79-2901]
[1227-29290001-2146623-923005227-79-2901]
Step 2.4.5
Perform the row operation R3=R3-5227R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 2.4.5.1
Perform the row operation R3=R3-5227R2 to make the entry at 3,2 a 0.
[1227-29290001-2146623-92300-522705227-52271-79-5227(-2146)-29-52276230-5227(-923)1-52270]
Step 2.4.5.2
Simplify R3.
[1227-29290001-2146623-923000769-506952691]
[1227-29290001-2146623-923000769-506952691]
Step 2.4.6
Multiply each element of R3 by 697 to make the entry at 3,3 a 1.
Tap for more steps...
Step 2.4.6.1
Multiply each element of R3 by 697 to make the entry at 3,3 a 1.
[1227-29290001-2146623-923069706970697769697(-5069)69752696971]
Step 2.4.6.2
Simplify R3.
[1227-29290001-2146623-9230001-507527697]
[1227-29290001-2146623-9230001-507527697]
Step 2.4.7
Perform the row operation R2=R2+2146R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 2.4.7.1
Perform the row operation R2=R2+2146R3 to make the entry at 2,3 a 0.
[1227-2929000+214601+21460-2146+21461623+2146(-507)-923+21465270+2146697001-507527697]
Step 2.4.7.2
Simplify R2.
[1227-292900010-3392001-507527697]
[1227-292900010-3392001-507527697]
Step 2.4.8
Perform the row operation R1=R1+29R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 2.4.8.1
Perform the row operation R1=R1+29R3 to make the entry at 1,3 a 0.
[1+290227+290-29+29129+29(-507)0+295270+29697010-3392001-507527697]
Step 2.4.8.2
Simplify R1.
[12270-8663104634621010-3392001-507527697]
[12270-8663104634621010-3392001-507527697]
Step 2.4.9
Perform the row operation R1=R1-227R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 2.4.9.1
Perform the row operation R1=R1-227R2 to make the entry at 1,2 a 0.
[1-2270227-22710-2270-8663-227-310463-22734621-22792010-3392001-507527697]
Step 2.4.9.2
Simplify R1.
[100-87107137010-3392001-507527697]
[100-87107137010-3392001-507527697]
[100-87107137010-3392001-507527697]
Step 2.5
The right half of the reduced row echelon form is the inverse.
[-87107137-3392-507527697]
[-87107137-3392-507527697]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([-87107137-3392-507527697][9213-13-731212-1])[xyz]=[-87107137-3392-507527697][-145493-15]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xyz]=[-87107137-3392-507527697][-145493-15]
Step 5
Multiply [-87107137-3392-507527697][-145493-15].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[-87-145+107493+137-15-3-145+3(493)+92-15-507-145+527493+697-15]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
Tap for more steps...
Step 5.3.1
Multiply 6215 by 3.
[338521833218645+364721]
Step 5.3.2
Multiply 364 by 7.
[338521833218645+254821]
Step 5.3.3
Add 18645 and 2548.
[33852183322119321]
[33852183322119321]
[33852183322119321]
Step 6
Simplify the left and right side.
[xyz]=[33852183322119321]
Step 7
Find the solution.
x=338521
y=8332
z=2119321
 [x2  12  π  xdx ]