Linear Algebra Examples

Solve Using an Inverse Matrix 2x-5y+5z=28 , -3x-2y+15z=35 , -3x+6y-5z=33
2x-5y+5z=282x5y+5z=28 , -3x-2y+15z=353x2y+15z=35 , -3x+6y-5z=333x+6y5z=33
Step 1
Find the AX=BAX=B from the system of equations.
[2-55-3-215-36-5][xyz]=[283533]2553215365xyz=283533
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
Find the determinant.
Tap for more steps...
Step 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-2156-5|21565
Step 2.1.1.4
Multiply element a11a11 by its cofactor.
2|-2156-5|221565
Step 2.1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|-315-3-5|31535
Step 2.1.1.6
Multiply element a12a12 by its cofactor.
5|-315-3-5|531535
Step 2.1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|-3-2-36|3236
Step 2.1.1.8
Multiply element a13a13 by its cofactor.
5|-3-2-36|53236
Step 2.1.1.9
Add the terms together.
2|-2156-5|+5|-315-3-5|+5|-3-2-36|221565+531535+53236
2|-2156-5|+5|-315-3-5|+5|-3-2-36|221565+531535+53236
Step 2.1.2
Evaluate |-2156-5|21565.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
2(-2-5-615)+5|-315-3-5|+5|-3-2-36|2(25615)+531535+53236
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply -22 by -55.
2(10-615)+5|-315-3-5|+5|-3-2-36|2(10615)+531535+53236
Step 2.1.2.2.1.2
Multiply -66 by 1515.
2(10-90)+5|-315-3-5|+5|-3-2-36|2(1090)+531535+53236
2(10-90)+5|-315-3-5|+5|-3-2-36|2(1090)+531535+53236
Step 2.1.2.2.2
Subtract 9090 from 1010.
2-80+5|-315-3-5|+5|-3-2-36|280+531535+53236
2-80+5|-315-3-5|+5|-3-2-36|280+531535+53236
2-80+5|-315-3-5|+5|-3-2-36|280+531535+53236
Step 2.1.3
Evaluate |-315-3-5|31535.
Tap for more steps...
Step 2.1.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
2-80+5(-3-5-(-315))+5|-3-2-36|280+5(35(315))+53236
Step 2.1.3.2
Simplify the determinant.
Tap for more steps...
Step 2.1.3.2.1
Simplify each term.
Tap for more steps...
Step 2.1.3.2.1.1
Multiply -33 by -55.
2-80+5(15-(-315))+5|-3-2-36|280+5(15(315))+53236
Step 2.1.3.2.1.2
Multiply -(-315)(315).
Tap for more steps...
Step 2.1.3.2.1.2.1
Multiply -33 by 1515.
2-80+5(15--45)+5|-3-2-36|280+5(1545)+53236
Step 2.1.3.2.1.2.2
Multiply -11 by -4545.
2-80+5(15+45)+5|-3-2-36|280+5(15+45)+53236
2-80+5(15+45)+5|-3-2-36|280+5(15+45)+53236
2-80+5(15+45)+5|-3-2-36|280+5(15+45)+53236
Step 2.1.3.2.2
Add 1515 and 4545.
2-80+560+5|-3-2-36|280+560+53236
2-80+560+5|-3-2-36|280+560+53236
2-80+560+5|-3-2-36|280+560+53236
Step 2.1.4
Evaluate |-3-2-36|.
Tap for more steps...
Step 2.1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
2-80+560+5(-36-(-3-2))
Step 2.1.4.2
Simplify the determinant.
Tap for more steps...
Step 2.1.4.2.1
Simplify each term.
Tap for more steps...
Step 2.1.4.2.1.1
Multiply -3 by 6.
2-80+560+5(-18-(-3-2))
Step 2.1.4.2.1.2
Multiply -(-3-2).
Tap for more steps...
Step 2.1.4.2.1.2.1
Multiply -3 by -2.
2-80+560+5(-18-16)
Step 2.1.4.2.1.2.2
Multiply -1 by 6.
2-80+560+5(-18-6)
2-80+560+5(-18-6)
2-80+560+5(-18-6)
Step 2.1.4.2.2
Subtract 6 from -18.
2-80+560+5-24
2-80+560+5-24
2-80+560+5-24
Step 2.1.5
Simplify the determinant.
Tap for more steps...
Step 2.1.5.1
Simplify each term.
Tap for more steps...
Step 2.1.5.1.1
Multiply 2 by -80.
-160+560+5-24
Step 2.1.5.1.2
Multiply 5 by 60.
-160+300+5-24
Step 2.1.5.1.3
Multiply 5 by -24.
-160+300-120
-160+300-120
Step 2.1.5.2
Add -160 and 300.
140-120
Step 2.1.5.3
Subtract 120 from 140.
20
20
20
Step 2.2
Since the determinant is non-zero, the inverse exists.
Step 2.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[2-55100-3-215010-36-5001]
Step 2.4
Find the reduced row echelon form.
Tap for more steps...
Step 2.4.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Tap for more steps...
Step 2.4.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[22-5252120202-3-215010-36-5001]
Step 2.4.1.2
Simplify R1.
[1-52521200-3-215010-36-5001]
[1-52521200-3-215010-36-5001]
Step 2.4.2
Perform the row operation R2=R2+3R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 2.4.2.1
Perform the row operation R2=R2+3R1 to make the entry at 2,1 a 0.
[1-52521200-3+31-2+3(-52)15+3(52)0+3(12)1+300+30-36-5001]
Step 2.4.2.2
Simplify R2.
[1-525212000-1924523210-36-5001]
[1-525212000-1924523210-36-5001]
Step 2.4.3
Perform the row operation R3=R3+3R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 2.4.3.1
Perform the row operation R3=R3+3R1 to make the entry at 3,1 a 0.
[1-525212000-1924523210-3+316+3(-52)-5+3(52)0+3(12)0+301+30]
Step 2.4.3.2
Simplify R3.
[1-525212000-19245232100-32523201]
[1-525212000-19245232100-32523201]
Step 2.4.4
Multiply each element of R2 by -219 to make the entry at 2,2 a 1.
Tap for more steps...
Step 2.4.4.1
Multiply each element of R2 by -219 to make the entry at 2,2 a 1.
[1-52521200-2190-219(-192)-219452-21932-2191-21900-32523201]
Step 2.4.4.2
Simplify R2.
[1-5252120001-4519-319-21900-32523201]
[1-5252120001-4519-319-21900-32523201]
Step 2.4.5
Perform the row operation R3=R3+32R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 2.4.5.1
Perform the row operation R3=R3+32R2 to make the entry at 3,2 a 0.
[1-5252120001-4519-319-21900+320-32+32152+32(-4519)32+32(-319)0+32(-219)1+320]
Step 2.4.5.2
Simplify R3.
[1-5252120001-4519-319-219000-20192419-3191]
[1-5252120001-4519-319-219000-20192419-3191]
Step 2.4.6
Multiply each element of R3 by -1920 to make the entry at 3,3 a 1.
Tap for more steps...
Step 2.4.6.1
Multiply each element of R3 by -1920 to make the entry at 3,3 a 1.
[1-5252120001-4519-319-2190-19200-19200-1920(-2019)-19202419-1920(-319)-19201]
Step 2.4.6.2
Simplify R3.
[1-5252120001-4519-319-2190001-65320-1920]
[1-5252120001-4519-319-2190001-65320-1920]
Step 2.4.7
Perform the row operation R2=R2+4519R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 2.4.7.1
Perform the row operation R2=R2+4519R3 to make the entry at 2,3 a 0.
[1-525212000+451901+45190-4519+45191-319+4519(-65)-219+45193200+4519(-1920)001-65320-1920]
Step 2.4.7.2
Simplify R2.
[1-52521200010-314-94001-65320-1920]
[1-52521200010-314-94001-65320-1920]
Step 2.4.8
Perform the row operation R1=R1-52R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 2.4.8.1
Perform the row operation R1=R1-52R3 to make the entry at 1,3 a 0.
[1-520-52-52052-52112-52(-65)0-523200-52(-1920)010-314-94001-65320-1920]
Step 2.4.8.2
Simplify R1.
[1-52072-38198010-314-94001-65320-1920]
[1-52072-38198010-314-94001-65320-1920]
Step 2.4.9
Perform the row operation R1=R1+52R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 2.4.9.1
Perform the row operation R1=R1+52R2 to make the entry at 1,2 a 0.
[1+520-52+5210+52072+52-3-38+5214198+52(-94)010-314-94001-65320-1920]
Step 2.4.9.2
Simplify R1.
[100-414-134010-314-94001-65320-1920]
[100-414-134010-314-94001-65320-1920]
[100-414-134010-314-94001-65320-1920]
Step 2.5
The right half of the reduced row echelon form is the inverse.
[-414-134-314-94-65320-1920]
[-414-134-314-94-65320-1920]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([-414-134-314-94-65320-1920][2-55-3-215-36-5])[xyz]=[-414-134-314-94-65320-1920][283533]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xyz]=[-414-134-314-94-65320-1920][283533]
Step 5
Multiply [-414-134-314-94-65320-1920][283533].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[-428+1435-13433-328+1435-9433-6528+32035-192033]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[-4212-2992-59710]
[-4212-2992-59710]
Step 6
Simplify the left and right side.
[xyz]=[-4212-2992-59710]
Step 7
Find the solution.
x=-4212
y=-2992
z=-59710
 [x2  12  π  xdx ]