Enter a problem...
Linear Algebra Examples
[-63302433-15-9-453015]⎡⎢⎣−63302433−15−9−453015⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-15-93015|∣∣∣−15−93015∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=-15⋅15-30⋅-9a11=−15⋅15−30⋅−9
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply -15−15 by 1515.
a11=-225-30⋅-9a11=−225−30⋅−9
Step 2.1.2.2.1.2
Multiply -30−30 by -9−9.
a11=-225+270a11=−225+270
a11=-225+270a11=−225+270
Step 2.1.2.2.2
Add -225−225 and 270270.
a11=45a11=45
a11=45a11=45
a11=45a11=45
a11=45a11=45
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|33-9-4515|∣∣∣33−9−4515∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=33⋅15-(-45⋅-9)a12=33⋅15−(−45⋅−9)
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 3333 by 1515.
a12=495-(-45⋅-9)a12=495−(−45⋅−9)
Step 2.2.2.2.1.2
Multiply -(-45⋅-9)−(−45⋅−9).
Step 2.2.2.2.1.2.1
Multiply -45−45 by -9−9.
a12=495-1⋅405a12=495−1⋅405
Step 2.2.2.2.1.2.2
Multiply -1−1 by 405405.
a12=495-405a12=495−405
a12=495-405a12=495−405
a12=495-405a12=495−405
Step 2.2.2.2.2
Subtract 405405 from 495495.
a12=90a12=90
a12=90a12=90
a12=90a12=90
a12=90a12=90
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|33-15-4530|∣∣∣33−15−4530∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=33⋅30-(-45⋅-15)a13=33⋅30−(−45⋅−15)
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 3333 by 3030.
a13=990-(-45⋅-15)a13=990−(−45⋅−15)
Step 2.3.2.2.1.2
Multiply -(-45⋅-15)−(−45⋅−15).
Step 2.3.2.2.1.2.1
Multiply -45−45 by -15−15.
a13=990-1⋅675a13=990−1⋅675
Step 2.3.2.2.1.2.2
Multiply -1−1 by 675675.
a13=990-675a13=990−675
a13=990-675a13=990−675
a13=990-675a13=990−675
Step 2.3.2.2.2
Subtract 675675 from 990990.
a13=315a13=315
a13=315a13=315
a13=315a13=315
a13=315a13=315
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|30243015|∣∣∣30243015∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a21=30⋅15-30⋅24a21=30⋅15−30⋅24
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 3030 by 1515.
a21=450-30⋅24a21=450−30⋅24
Step 2.4.2.2.1.2
Multiply -30−30 by 2424.
a21=450-720a21=450−720
a21=450-720a21=450−720
Step 2.4.2.2.2
Subtract 720720 from 450450.
a21=-270a21=−270
a21=-270
a21=-270
a21=-270
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|-6324-4515|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=-63⋅15-(-45⋅24)
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply -63 by 15.
a22=-945-(-45⋅24)
Step 2.5.2.2.1.2
Multiply -(-45⋅24).
Step 2.5.2.2.1.2.1
Multiply -45 by 24.
a22=-945--1080
Step 2.5.2.2.1.2.2
Multiply -1 by -1080.
a22=-945+1080
a22=-945+1080
a22=-945+1080
Step 2.5.2.2.2
Add -945 and 1080.
a22=135
a22=135
a22=135
a22=135
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|-6330-4530|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=-63⋅30-(-45⋅30)
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply -63 by 30.
a23=-1890-(-45⋅30)
Step 2.6.2.2.1.2
Multiply -(-45⋅30).
Step 2.6.2.2.1.2.1
Multiply -45 by 30.
a23=-1890--1350
Step 2.6.2.2.1.2.2
Multiply -1 by -1350.
a23=-1890+1350
a23=-1890+1350
a23=-1890+1350
Step 2.6.2.2.2
Add -1890 and 1350.
a23=-540
a23=-540
a23=-540
a23=-540
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|3024-15-9|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=30⋅-9-(-15⋅24)
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 30 by -9.
a31=-270-(-15⋅24)
Step 2.7.2.2.1.2
Multiply -(-15⋅24).
Step 2.7.2.2.1.2.1
Multiply -15 by 24.
a31=-270--360
Step 2.7.2.2.1.2.2
Multiply -1 by -360.
a31=-270+360
a31=-270+360
a31=-270+360
Step 2.7.2.2.2
Add -270 and 360.
a31=90
a31=90
a31=90
a31=90
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-632433-9|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=-63⋅-9-33⋅24
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply -63 by -9.
a32=567-33⋅24
Step 2.8.2.2.1.2
Multiply -33 by 24.
a32=567-792
a32=567-792
Step 2.8.2.2.2
Subtract 792 from 567.
a32=-225
a32=-225
a32=-225
a32=-225
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-633033-15|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=-63⋅-15-33⋅30
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply -63 by -15.
a33=945-33⋅30
Step 2.9.2.2.1.2
Multiply -33 by 30.
a33=945-990
a33=945-990
Step 2.9.2.2.2
Subtract 990 from 945.
a33=-45
a33=-45
a33=-45
a33=-45
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[45-9031527013554090225-45]
[45-9031527013554090225-45]
Step 3
Transpose the matrix by switching its rows to columns.
[4527090-90135225315540-45]