Linear Algebra Examples

Find the Adjoint [[-63,30,24],[33,-15,-9],[-45,30,15]]
[-63302433-15-9-453015]63302433159453015
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-15-93015|1593015
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=-1515-30-9a11=1515309
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply -1515 by 1515.
a11=-225-30-9a11=225309
Step 2.1.2.2.1.2
Multiply -3030 by -99.
a11=-225+270a11=225+270
a11=-225+270a11=225+270
Step 2.1.2.2.2
Add -225225 and 270270.
a11=45a11=45
a11=45a11=45
a11=45a11=45
a11=45a11=45
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|33-9-4515|3394515
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=3315-(-45-9)a12=3315(459)
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 3333 by 1515.
a12=495-(-45-9)a12=495(459)
Step 2.2.2.2.1.2
Multiply -(-45-9)(459).
Tap for more steps...
Step 2.2.2.2.1.2.1
Multiply -4545 by -99.
a12=495-1405a12=4951405
Step 2.2.2.2.1.2.2
Multiply -11 by 405405.
a12=495-405a12=495405
a12=495-405a12=495405
a12=495-405a12=495405
Step 2.2.2.2.2
Subtract 405405 from 495495.
a12=90a12=90
a12=90a12=90
a12=90a12=90
a12=90a12=90
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|33-15-4530|33154530
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=3330-(-45-15)a13=3330(4515)
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 3333 by 3030.
a13=990-(-45-15)a13=990(4515)
Step 2.3.2.2.1.2
Multiply -(-45-15)(4515).
Tap for more steps...
Step 2.3.2.2.1.2.1
Multiply -4545 by -1515.
a13=990-1675a13=9901675
Step 2.3.2.2.1.2.2
Multiply -11 by 675675.
a13=990-675a13=990675
a13=990-675a13=990675
a13=990-675a13=990675
Step 2.3.2.2.2
Subtract 675675 from 990990.
a13=315a13=315
a13=315a13=315
a13=315a13=315
a13=315a13=315
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|30243015|30243015
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=3015-3024a21=30153024
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 3030 by 1515.
a21=450-3024a21=4503024
Step 2.4.2.2.1.2
Multiply -3030 by 2424.
a21=450-720a21=450720
a21=450-720a21=450720
Step 2.4.2.2.2
Subtract 720720 from 450450.
a21=-270a21=270
a21=-270
a21=-270
a21=-270
Step 2.5
Calculate the minor for element a22.
Tap for more steps...
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|-6324-4515|
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=-6315-(-4524)
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply -63 by 15.
a22=-945-(-4524)
Step 2.5.2.2.1.2
Multiply -(-4524).
Tap for more steps...
Step 2.5.2.2.1.2.1
Multiply -45 by 24.
a22=-945--1080
Step 2.5.2.2.1.2.2
Multiply -1 by -1080.
a22=-945+1080
a22=-945+1080
a22=-945+1080
Step 2.5.2.2.2
Add -945 and 1080.
a22=135
a22=135
a22=135
a22=135
Step 2.6
Calculate the minor for element a23.
Tap for more steps...
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|-6330-4530|
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=-6330-(-4530)
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply -63 by 30.
a23=-1890-(-4530)
Step 2.6.2.2.1.2
Multiply -(-4530).
Tap for more steps...
Step 2.6.2.2.1.2.1
Multiply -45 by 30.
a23=-1890--1350
Step 2.6.2.2.1.2.2
Multiply -1 by -1350.
a23=-1890+1350
a23=-1890+1350
a23=-1890+1350
Step 2.6.2.2.2
Add -1890 and 1350.
a23=-540
a23=-540
a23=-540
a23=-540
Step 2.7
Calculate the minor for element a31.
Tap for more steps...
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|3024-15-9|
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=30-9-(-1524)
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 30 by -9.
a31=-270-(-1524)
Step 2.7.2.2.1.2
Multiply -(-1524).
Tap for more steps...
Step 2.7.2.2.1.2.1
Multiply -15 by 24.
a31=-270--360
Step 2.7.2.2.1.2.2
Multiply -1 by -360.
a31=-270+360
a31=-270+360
a31=-270+360
Step 2.7.2.2.2
Add -270 and 360.
a31=90
a31=90
a31=90
a31=90
Step 2.8
Calculate the minor for element a32.
Tap for more steps...
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-632433-9|
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=-63-9-3324
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply -63 by -9.
a32=567-3324
Step 2.8.2.2.1.2
Multiply -33 by 24.
a32=567-792
a32=567-792
Step 2.8.2.2.2
Subtract 792 from 567.
a32=-225
a32=-225
a32=-225
a32=-225
Step 2.9
Calculate the minor for element a33.
Tap for more steps...
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-633033-15|
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=-63-15-3330
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply -63 by -15.
a33=945-3330
Step 2.9.2.2.1.2
Multiply -33 by 30.
a33=945-990
a33=945-990
Step 2.9.2.2.2
Subtract 990 from 945.
a33=-45
a33=-45
a33=-45
a33=-45
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[45-9031527013554090225-45]
[45-9031527013554090225-45]
Step 3
Transpose the matrix by switching its rows to columns.
[4527090-90135225315540-45]
 [x2  12  π  xdx ]